ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://toot.io/users/synlogic/statuses/111245214244381100", "type": "Note", "summary": null, "inReplyTo": null, "published": "2023-10-16T14:40:58Z", "url": "https://toot.io/@synlogic/111245214244381100", "attributedTo": "https://toot.io/users/synlogic", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://toot.io/users/synlogic/followers" ], "sensitive": false, "atomUri": "https://toot.io/users/synlogic/statuses/111245214244381100", "inReplyToAtomUri": null, "conversation": "tag:toot.io,2023-10-16:objectId=37100327:objectType=Conversation", "content": "<p>latlearn</p><p>my Go-based FOSS lib for latency instrum &amp; reporting</p><p>unlike some other ways to measure &amp; learn latency statistics, latlearn is intended, by design, to be integrated into your code &amp; remain there, enabled, *all* the time</p><p>why?</p><p>1. its overhead is tiny. around 74 ns per span, in many cases -- in 99.9% thats trivial</p><p>2. gives way to *parameterize* reported latencies -- to study O()-style complexity</p><p>3. allows autonomous latency-based dynamic adjustments to logic</p><p><a href=\"https://github.com/mkramlich/latlearn\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">github.com/mkramlich/latlearn</span><span class=\"invisible\"></span></a></p>", "contentMap": { "en": "<p>latlearn</p><p>my Go-based FOSS lib for latency instrum &amp; reporting</p><p>unlike some other ways to measure &amp; learn latency statistics, latlearn is intended, by design, to be integrated into your code &amp; remain there, enabled, *all* the time</p><p>why?</p><p>1. its overhead is tiny. around 74 ns per span, in many cases -- in 99.9% thats trivial</p><p>2. gives way to *parameterize* reported latencies -- to study O()-style complexity</p><p>3. allows autonomous latency-based dynamic adjustments to logic</p><p><a href=\"https://github.com/mkramlich/latlearn\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">github.com/mkramlich/latlearn</span><span class=\"invisible\"></span></a></p>" }, "updated": "2023-10-16T14:42:52Z", "attachment": [], "tag": [], "replies": { "id": "https://toot.io/users/synlogic/statuses/111245214244381100/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://toot.io/users/synlogic/statuses/111245214244381100/replies?min_id=111245272901087738&page=true", "partOf": "https://toot.io/users/synlogic/statuses/111245214244381100/replies", "items": [ "https://toot.io/users/synlogic/statuses/111245272901087738" ] } }, "likes": { "id": "https://toot.io/users/synlogic/statuses/111245214244381100/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://toot.io/users/synlogic/statuses/111245214244381100/shares", "type": "Collection", "totalItems": 1 } }