ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324", "type": "Note", "summary": null, "inReplyTo": null, "published": "2025-06-10T23:45:12Z", "url": "https://techhub.social/@Anoncheg/114661727440242324", "attributedTo": "https://techhub.social/users/Anoncheg", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://techhub.social/users/Anoncheg/followers" ], "sensitive": false, "atomUri": "https://techhub.social/users/Anoncheg/statuses/114661727440242324", "inReplyToAtomUri": null, "conversation": "tag:techhub.social,2025-06-10:objectId=273904848:objectType=Conversation", "content": "<p>Part1: <a href=\"https://techhub.social/tags/dailyreport\" class=\"mention hashtag\" rel=\"tag\">#<span>dailyreport</span></a> <a href=\"https://techhub.social/tags/cuda\" class=\"mention hashtag\" rel=\"tag\">#<span>cuda</span></a> <a href=\"https://techhub.social/tags/nvidia\" class=\"mention hashtag\" rel=\"tag\">#<span>nvidia</span></a> <a href=\"https://techhub.social/tags/gentoo\" class=\"mention hashtag\" rel=\"tag\">#<span>gentoo</span></a> <a href=\"https://techhub.social/tags/llvm\" class=\"mention hashtag\" rel=\"tag\">#<span>llvm</span></a> <a href=\"https://techhub.social/tags/clang\" class=\"mention hashtag\" rel=\"tag\">#<span>clang</span></a><br /><a href=\"https://techhub.social/tags/programming\" class=\"mention hashtag\" rel=\"tag\">#<span>programming</span></a> <a href=\"https://techhub.social/tags/gcc\" class=\"mention hashtag\" rel=\"tag\">#<span>gcc</span></a> <a href=\"https://techhub.social/tags/c\" class=\"mention hashtag\" rel=\"tag\">#<span>c</span></a>++ <a href=\"https://techhub.social/tags/linux\" class=\"mention hashtag\" rel=\"tag\">#<span>linux</span></a> <a href=\"https://techhub.social/tags/toolchain\" class=\"mention hashtag\" rel=\"tag\">#<span>toolchain</span></a> <a href=\"https://techhub.social/tags/pytorch\" class=\"mention hashtag\" rel=\"tag\">#<span>pytorch</span></a></p><p>I am compiling PyTorch with CUDA and CUDNN. PyTorch is<br /> mainly a Python library with main part of Caffe2 C++<br /> library.</p><p>Main dependency of Caffe2 with CUDA support is<br /> NVIDIA &quot;cutlass&quot; library (collection of CUDA C++<br /> template abstractions). This library have &quot;CUDA code&quot;<br /> that may be compiled with nvcc NVIDIA CUDA compiler,<br /> distributed with nvidia-cuda-toolkit, or with LLMV<br /> Clang++ compiler. But llvm support CUDA only up to 12.1<br /> version, but may be used to compile CUDA for sm_52<br /> architecture. Looks like kneeling before NVIDIA. :)</p><p>Before installing dev-libs/cutlass you should do:<br /> export CUDAARCHS=75</p><p>I sucessfully compiled cutlass, now I am trying to<br /> compile PyTorch CUDA code with Clang++ compiler.</p>", "contentMap": { "en": "<p>Part1: <a href=\"https://techhub.social/tags/dailyreport\" class=\"mention hashtag\" rel=\"tag\">#<span>dailyreport</span></a> <a href=\"https://techhub.social/tags/cuda\" class=\"mention hashtag\" rel=\"tag\">#<span>cuda</span></a> <a href=\"https://techhub.social/tags/nvidia\" class=\"mention hashtag\" rel=\"tag\">#<span>nvidia</span></a> <a href=\"https://techhub.social/tags/gentoo\" class=\"mention hashtag\" rel=\"tag\">#<span>gentoo</span></a> <a href=\"https://techhub.social/tags/llvm\" class=\"mention hashtag\" rel=\"tag\">#<span>llvm</span></a> <a href=\"https://techhub.social/tags/clang\" class=\"mention hashtag\" rel=\"tag\">#<span>clang</span></a><br /><a href=\"https://techhub.social/tags/programming\" class=\"mention hashtag\" rel=\"tag\">#<span>programming</span></a> <a href=\"https://techhub.social/tags/gcc\" class=\"mention hashtag\" rel=\"tag\">#<span>gcc</span></a> <a href=\"https://techhub.social/tags/c\" class=\"mention hashtag\" rel=\"tag\">#<span>c</span></a>++ <a href=\"https://techhub.social/tags/linux\" class=\"mention hashtag\" rel=\"tag\">#<span>linux</span></a> <a href=\"https://techhub.social/tags/toolchain\" class=\"mention hashtag\" rel=\"tag\">#<span>toolchain</span></a> <a href=\"https://techhub.social/tags/pytorch\" class=\"mention hashtag\" rel=\"tag\">#<span>pytorch</span></a></p><p>I am compiling PyTorch with CUDA and CUDNN. PyTorch is<br /> mainly a Python library with main part of Caffe2 C++<br /> library.</p><p>Main dependency of Caffe2 with CUDA support is<br /> NVIDIA &quot;cutlass&quot; library (collection of CUDA C++<br /> template abstractions). This library have &quot;CUDA code&quot;<br /> that may be compiled with nvcc NVIDIA CUDA compiler,<br /> distributed with nvidia-cuda-toolkit, or with LLMV<br /> Clang++ compiler. But llvm support CUDA only up to 12.1<br /> version, but may be used to compile CUDA for sm_52<br /> architecture. Looks like kneeling before NVIDIA. :)</p><p>Before installing dev-libs/cutlass you should do:<br /> export CUDAARCHS=75</p><p>I sucessfully compiled cutlass, now I am trying to<br /> compile PyTorch CUDA code with Clang++ compiler.</p>" }, "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://techhub.social/tags/dailyreport", "name": "#dailyreport" }, { "type": "Hashtag", "href": "https://techhub.social/tags/cuda", "name": "#cuda" }, { "type": "Hashtag", "href": "https://techhub.social/tags/nvidia", "name": "#nvidia" }, { "type": "Hashtag", "href": "https://techhub.social/tags/gentoo", "name": "#gentoo" }, { "type": "Hashtag", "href": "https://techhub.social/tags/llvm", "name": "#llvm" }, { "type": "Hashtag", "href": "https://techhub.social/tags/clang", "name": "#clang" }, { "type": "Hashtag", "href": "https://techhub.social/tags/programming", "name": "#programming" }, { "type": "Hashtag", "href": "https://techhub.social/tags/gcc", "name": "#gcc" }, { "type": "Hashtag", "href": "https://techhub.social/tags/c", "name": "#c" }, { "type": "Hashtag", "href": "https://techhub.social/tags/linux", "name": "#linux" }, { "type": "Hashtag", "href": "https://techhub.social/tags/toolchain", "name": "#toolchain" }, { "type": "Hashtag", "href": "https://techhub.social/tags/pytorch", "name": "#pytorch" } ], "replies": { "id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/replies?only_other_accounts=true&page=true", "partOf": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/replies", "items": [] } }, "likes": { "id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/shares", "type": "Collection", "totalItems": 1 } }