A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2025-06-10T23:45:12Z",
"url": "https://techhub.social/@Anoncheg/114661727440242324",
"attributedTo": "https://techhub.social/users/Anoncheg",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://techhub.social/users/Anoncheg/followers"
],
"sensitive": false,
"atomUri": "https://techhub.social/users/Anoncheg/statuses/114661727440242324",
"inReplyToAtomUri": null,
"conversation": "tag:techhub.social,2025-06-10:objectId=273904848:objectType=Conversation",
"content": "<p>Part1: <a href=\"https://techhub.social/tags/dailyreport\" class=\"mention hashtag\" rel=\"tag\">#<span>dailyreport</span></a> <a href=\"https://techhub.social/tags/cuda\" class=\"mention hashtag\" rel=\"tag\">#<span>cuda</span></a> <a href=\"https://techhub.social/tags/nvidia\" class=\"mention hashtag\" rel=\"tag\">#<span>nvidia</span></a> <a href=\"https://techhub.social/tags/gentoo\" class=\"mention hashtag\" rel=\"tag\">#<span>gentoo</span></a> <a href=\"https://techhub.social/tags/llvm\" class=\"mention hashtag\" rel=\"tag\">#<span>llvm</span></a> <a href=\"https://techhub.social/tags/clang\" class=\"mention hashtag\" rel=\"tag\">#<span>clang</span></a><br /><a href=\"https://techhub.social/tags/programming\" class=\"mention hashtag\" rel=\"tag\">#<span>programming</span></a> <a href=\"https://techhub.social/tags/gcc\" class=\"mention hashtag\" rel=\"tag\">#<span>gcc</span></a> <a href=\"https://techhub.social/tags/c\" class=\"mention hashtag\" rel=\"tag\">#<span>c</span></a>++ <a href=\"https://techhub.social/tags/linux\" class=\"mention hashtag\" rel=\"tag\">#<span>linux</span></a> <a href=\"https://techhub.social/tags/toolchain\" class=\"mention hashtag\" rel=\"tag\">#<span>toolchain</span></a> <a href=\"https://techhub.social/tags/pytorch\" class=\"mention hashtag\" rel=\"tag\">#<span>pytorch</span></a></p><p>I am compiling PyTorch with CUDA and CUDNN. PyTorch is<br /> mainly a Python library with main part of Caffe2 C++<br /> library.</p><p>Main dependency of Caffe2 with CUDA support is<br /> NVIDIA "cutlass" library (collection of CUDA C++<br /> template abstractions). This library have "CUDA code"<br /> that may be compiled with nvcc NVIDIA CUDA compiler,<br /> distributed with nvidia-cuda-toolkit, or with LLMV<br /> Clang++ compiler. But llvm support CUDA only up to 12.1<br /> version, but may be used to compile CUDA for sm_52<br /> architecture. Looks like kneeling before NVIDIA. :)</p><p>Before installing dev-libs/cutlass you should do:<br /> export CUDAARCHS=75</p><p>I sucessfully compiled cutlass, now I am trying to<br /> compile PyTorch CUDA code with Clang++ compiler.</p>",
"contentMap": {
"en": "<p>Part1: <a href=\"https://techhub.social/tags/dailyreport\" class=\"mention hashtag\" rel=\"tag\">#<span>dailyreport</span></a> <a href=\"https://techhub.social/tags/cuda\" class=\"mention hashtag\" rel=\"tag\">#<span>cuda</span></a> <a href=\"https://techhub.social/tags/nvidia\" class=\"mention hashtag\" rel=\"tag\">#<span>nvidia</span></a> <a href=\"https://techhub.social/tags/gentoo\" class=\"mention hashtag\" rel=\"tag\">#<span>gentoo</span></a> <a href=\"https://techhub.social/tags/llvm\" class=\"mention hashtag\" rel=\"tag\">#<span>llvm</span></a> <a href=\"https://techhub.social/tags/clang\" class=\"mention hashtag\" rel=\"tag\">#<span>clang</span></a><br /><a href=\"https://techhub.social/tags/programming\" class=\"mention hashtag\" rel=\"tag\">#<span>programming</span></a> <a href=\"https://techhub.social/tags/gcc\" class=\"mention hashtag\" rel=\"tag\">#<span>gcc</span></a> <a href=\"https://techhub.social/tags/c\" class=\"mention hashtag\" rel=\"tag\">#<span>c</span></a>++ <a href=\"https://techhub.social/tags/linux\" class=\"mention hashtag\" rel=\"tag\">#<span>linux</span></a> <a href=\"https://techhub.social/tags/toolchain\" class=\"mention hashtag\" rel=\"tag\">#<span>toolchain</span></a> <a href=\"https://techhub.social/tags/pytorch\" class=\"mention hashtag\" rel=\"tag\">#<span>pytorch</span></a></p><p>I am compiling PyTorch with CUDA and CUDNN. PyTorch is<br /> mainly a Python library with main part of Caffe2 C++<br /> library.</p><p>Main dependency of Caffe2 with CUDA support is<br /> NVIDIA "cutlass" library (collection of CUDA C++<br /> template abstractions). This library have "CUDA code"<br /> that may be compiled with nvcc NVIDIA CUDA compiler,<br /> distributed with nvidia-cuda-toolkit, or with LLMV<br /> Clang++ compiler. But llvm support CUDA only up to 12.1<br /> version, but may be used to compile CUDA for sm_52<br /> architecture. Looks like kneeling before NVIDIA. :)</p><p>Before installing dev-libs/cutlass you should do:<br /> export CUDAARCHS=75</p><p>I sucessfully compiled cutlass, now I am trying to<br /> compile PyTorch CUDA code with Clang++ compiler.</p>"
},
"attachment": [],
"tag": [
{
"type": "Hashtag",
"href": "https://techhub.social/tags/dailyreport",
"name": "#dailyreport"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/cuda",
"name": "#cuda"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/nvidia",
"name": "#nvidia"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/gentoo",
"name": "#gentoo"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/llvm",
"name": "#llvm"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/clang",
"name": "#clang"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/programming",
"name": "#programming"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/gcc",
"name": "#gcc"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/c",
"name": "#c"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/linux",
"name": "#linux"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/toolchain",
"name": "#toolchain"
},
{
"type": "Hashtag",
"href": "https://techhub.social/tags/pytorch",
"name": "#pytorch"
}
],
"replies": {
"id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/replies?only_other_accounts=true&page=true",
"partOf": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/replies",
"items": []
}
},
"likes": {
"id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/likes",
"type": "Collection",
"totalItems": 1
},
"shares": {
"id": "https://techhub.social/users/Anoncheg/statuses/114661727440242324/shares",
"type": "Collection",
"totalItems": 0
}
}