ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://sigmoid.social/users/rope/statuses/109738646610851415/replies", "type": "Collection", "first": { "id": "https://sigmoid.social/users/rope/statuses/109738646610851415/replies?page=true", "type": "CollectionPage", "next": "https://sigmoid.social/users/rope/statuses/109738646610851415/replies?only_other_accounts=true&page=true", "partOf": "https://sigmoid.social/users/rope/statuses/109738646610851415/replies", "items": [ { "id": "https://sigmoid.social/users/rope/statuses/109738649308308193", "type": "Note", "summary": null, "inReplyTo": "https://sigmoid.social/users/rope/statuses/109738646610851415", "published": "2023-01-23T13:01:41Z", "url": "https://sigmoid.social/@rope/109738649308308193", "attributedTo": "https://sigmoid.social/users/rope", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://sigmoid.social/users/rope/followers" ], "sensitive": false, "atomUri": "https://sigmoid.social/users/rope/statuses/109738649308308193", "inReplyToAtomUri": "https://sigmoid.social/users/rope/statuses/109738646610851415", "conversation": "tag:sigmoid.social,2023-01-23:objectId=5344355:objectType=Conversation", "content": "<p>In short, a Bayesian structure score is simply the marginal likelihood of the structure G, integrating over model parameters θ: p(data | G) = ∫ p(data | G, θ) p(θ | G) dθ. Integrating over all parameterizations θ effectively protects against overfitting. A cool result is that, under certain assumptions, this score can be computed in closed form in Bayesian networks, see e.g. the classical paper by Heckerman, Geiger and Chickering, (1995).</p>", "contentMap": { "en": "<p>In short, a Bayesian structure score is simply the marginal likelihood of the structure G, integrating over model parameters θ: p(data | G) = ∫ p(data | G, θ) p(θ | G) dθ. Integrating over all parameterizations θ effectively protects against overfitting. A cool result is that, under certain assumptions, this score can be computed in closed form in Bayesian networks, see e.g. the classical paper by Heckerman, Geiger and Chickering, (1995).</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://sigmoid.social/users/rope/statuses/109738649308308193/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://sigmoid.social/users/rope/statuses/109738649308308193/replies?min_id=109738651110395806&page=true", "partOf": "https://sigmoid.social/users/rope/statuses/109738649308308193/replies", "items": [ "https://sigmoid.social/users/rope/statuses/109738651110395806" ] } }, "likes": { "id": "https://sigmoid.social/users/rope/statuses/109738649308308193/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://sigmoid.social/users/rope/statuses/109738649308308193/shares", "type": "Collection", "totalItems": 0 } } ] } }