ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://sigmoid.social/users/pixeltracker/statuses/114630032900529595", "type": "Note", "summary": null, "inReplyTo": null, "published": "2025-06-05T09:24:52Z", "url": "https://sigmoid.social/@pixeltracker/114630032900529595", "attributedTo": "https://sigmoid.social/users/pixeltracker", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://sigmoid.social/users/pixeltracker/followers" ], "sensitive": false, "atomUri": "https://sigmoid.social/users/pixeltracker/statuses/114630032900529595", "inReplyToAtomUri": null, "conversation": "tag:sigmoid.social,2025-06-05:objectId=59275471:objectType=Conversation", "content": "<p>🧠 New <a href=\"https://sigmoid.social/tags/preprint\" class=\"mention hashtag\" rel=\"tag\">#<span>preprint</span></a>! Confavreux et al. use meta-learning to uncover thousands of diverse, local <a href=\"https://sigmoid.social/tags/plasticity\" class=\"mention hashtag\" rel=\"tag\">#<span>plasticity</span></a> rule quadruplets that stabilize <a href=\"https://sigmoid.social/tags/RecurrentSpikingNetworks\" class=\"mention hashtag\" rel=\"tag\">#<span>RecurrentSpikingNetworks</span></a> — and incidentally support <a href=\"https://sigmoid.social/tags/memory\" class=\"mention hashtag\" rel=\"tag\">#<span>memory</span></a> functions like novelty detection, replay, &amp; contextual prediction. A striking case of function emerging from stability.</p><p>📄 <a href=\"https://doi.org/10.1101/2025.05.28.656584\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">doi.org/10.1101/2025.05.28.656</span><span class=\"invisible\">584</span></a></p><p><a href=\"https://sigmoid.social/tags/Neuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>Neuroscience</span></a> <a href=\"https://sigmoid.social/tags/Plasticity\" class=\"mention hashtag\" rel=\"tag\">#<span>Plasticity</span></a> <a href=\"https://sigmoid.social/tags/ComputationalNeuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>ComputationalNeuroscience</span></a> <a href=\"https://sigmoid.social/tags/CompNeuro\" class=\"mention hashtag\" rel=\"tag\">#<span>CompNeuro</span></a> <a href=\"https://sigmoid.social/tags/SNN\" class=\"mention hashtag\" rel=\"tag\">#<span>SNN</span></a> <a href=\"https://sigmoid.social/tags/SpikingNeurons\" class=\"mention hashtag\" rel=\"tag\">#<span>SpikingNeurons</span></a></p>", "contentMap": { "en": "<p>🧠 New <a href=\"https://sigmoid.social/tags/preprint\" class=\"mention hashtag\" rel=\"tag\">#<span>preprint</span></a>! Confavreux et al. use meta-learning to uncover thousands of diverse, local <a href=\"https://sigmoid.social/tags/plasticity\" class=\"mention hashtag\" rel=\"tag\">#<span>plasticity</span></a> rule quadruplets that stabilize <a href=\"https://sigmoid.social/tags/RecurrentSpikingNetworks\" class=\"mention hashtag\" rel=\"tag\">#<span>RecurrentSpikingNetworks</span></a> — and incidentally support <a href=\"https://sigmoid.social/tags/memory\" class=\"mention hashtag\" rel=\"tag\">#<span>memory</span></a> functions like novelty detection, replay, &amp; contextual prediction. A striking case of function emerging from stability.</p><p>📄 <a href=\"https://doi.org/10.1101/2025.05.28.656584\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">doi.org/10.1101/2025.05.28.656</span><span class=\"invisible\">584</span></a></p><p><a href=\"https://sigmoid.social/tags/Neuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>Neuroscience</span></a> <a href=\"https://sigmoid.social/tags/Plasticity\" class=\"mention hashtag\" rel=\"tag\">#<span>Plasticity</span></a> <a href=\"https://sigmoid.social/tags/ComputationalNeuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>ComputationalNeuroscience</span></a> <a href=\"https://sigmoid.social/tags/CompNeuro\" class=\"mention hashtag\" rel=\"tag\">#<span>CompNeuro</span></a> <a href=\"https://sigmoid.social/tags/SNN\" class=\"mention hashtag\" rel=\"tag\">#<span>SNN</span></a> <a href=\"https://sigmoid.social/tags/SpikingNeurons\" class=\"mention hashtag\" rel=\"tag\">#<span>SpikingNeurons</span></a></p>" }, "updated": "2025-06-05T09:26:15Z", "attachment": [ { "type": "Document", "mediaType": "image/jpeg", "url": "https://cdn.masto.host/sigmoidsocial/media_attachments/files/114/630/038/297/633/405/original/658bc114245a8bfc.jpeg", "name": "Figure 1 from the preprint.", "blurhash": "U9QT4LVYMw=v~qWBt8TK-oxtM_s:%Lx[WVM|", "width": 1244, "height": 436 } ], "tag": [ { "type": "Hashtag", "href": "https://sigmoid.social/tags/preprint", "name": "#preprint" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/plasticity", "name": "#plasticity" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/recurrentspikingnetworks", "name": "#recurrentspikingnetworks" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/memory", "name": "#memory" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/neuroscience", "name": "#neuroscience" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/computationalneuroscience", "name": "#computationalneuroscience" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/compneuro", "name": "#compneuro" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/snn", "name": "#snn" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/spikingneurons", "name": "#spikingneurons" } ], "replies": { "id": "https://sigmoid.social/users/pixeltracker/statuses/114630032900529595/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://sigmoid.social/users/pixeltracker/statuses/114630032900529595/replies?only_other_accounts=true&page=true", "partOf": "https://sigmoid.social/users/pixeltracker/statuses/114630032900529595/replies", "items": [] } }, "likes": { "id": "https://sigmoid.social/users/pixeltracker/statuses/114630032900529595/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://sigmoid.social/users/pixeltracker/statuses/114630032900529595/shares", "type": "Collection", "totalItems": 1 } }