ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://sigmoid.social/users/rope/statuses/109738646610851415", "type": "Note", "summary": null, "inReplyTo": null, "published": "2023-01-23T13:01:00Z", "url": "https://sigmoid.social/@rope/109738646610851415", "attributedTo": "https://sigmoid.social/users/rope", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://sigmoid.social/users/rope/followers", "https://sigmoid.social/users/leuvenai" ], "sensitive": false, "atomUri": "https://sigmoid.social/users/rope/statuses/109738646610851415", "inReplyToAtomUri": null, "conversation": "tag:sigmoid.social,2023-01-23:objectId=5344355:objectType=Conversation", "content": "<p>I&#39;m happy to share that our paper &quot;Bayesian Structure Scores for Probabilistic Circuits&quot; has been accepted at <a href=\"https://sigmoid.social/tags/aistats23\" class=\"mention hashtag\" rel=\"tag\">#<span>aistats23</span></a>! This is joint work with Yang Yang (MSc @mastodon.world, incoming PhD <span class=\"h-card\" translate=\"no\"><a href=\"https://sigmoid.social/@leuvenai\" class=\"u-url mention\">@<span>leuvenai</span></a></span> and Gennaro Gala.</p><p>The main contribution of the paper is to propose a new (actually old) way to learn the structure of <a href=\"https://sigmoid.social/tags/ProbabilisticCircuits\" class=\"mention hashtag\" rel=\"tag\">#<span>ProbabilisticCircuits</span></a>. We take lessons from classical structure learning in Bayesian networks which optimizes some structure score, where a principled choice is a Bayesian score.</p>", "contentMap": { "en": "<p>I&#39;m happy to share that our paper &quot;Bayesian Structure Scores for Probabilistic Circuits&quot; has been accepted at <a href=\"https://sigmoid.social/tags/aistats23\" class=\"mention hashtag\" rel=\"tag\">#<span>aistats23</span></a>! This is joint work with Yang Yang (MSc @mastodon.world, incoming PhD <span class=\"h-card\" translate=\"no\"><a href=\"https://sigmoid.social/@leuvenai\" class=\"u-url mention\">@<span>leuvenai</span></a></span> and Gennaro Gala.</p><p>The main contribution of the paper is to propose a new (actually old) way to learn the structure of <a href=\"https://sigmoid.social/tags/ProbabilisticCircuits\" class=\"mention hashtag\" rel=\"tag\">#<span>ProbabilisticCircuits</span></a>. We take lessons from classical structure learning in Bayesian networks which optimizes some structure score, where a principled choice is a Bayesian score.</p>" }, "attachment": [], "tag": [ { "type": "Mention", "href": "https://sigmoid.social/users/leuvenai", "name": "@leuvenai" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/aistats23", "name": "#aistats23" }, { "type": "Hashtag", "href": "https://sigmoid.social/tags/probabilisticcircuits", "name": "#probabilisticcircuits" } ], "replies": { "id": "https://sigmoid.social/users/rope/statuses/109738646610851415/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://sigmoid.social/users/rope/statuses/109738646610851415/replies?min_id=109738649308308193&page=true", "partOf": "https://sigmoid.social/users/rope/statuses/109738646610851415/replies", "items": [ "https://sigmoid.social/users/rope/statuses/109738649308308193" ] } }, "likes": { "id": "https://sigmoid.social/users/rope/statuses/109738646610851415/likes", "type": "Collection", "totalItems": 5 }, "shares": { "id": "https://sigmoid.social/users/rope/statuses/109738646610851415/shares", "type": "Collection", "totalItems": 6 } }