ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-10-18T07:54:35Z", "url": "https://nrw.social/@HaraldKi/113327346535864978", "attributedTo": "https://nrw.social/users/HaraldKi", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://nrw.social/users/HaraldKi/followers" ], "sensitive": false, "atomUri": "https://nrw.social/users/HaraldKi/statuses/113327346535864978", "inReplyToAtomUri": null, "conversation": "tag:nrw.social,2024-10-18:objectId=88787135:objectType=Conversation", "content": "<p><a href=\"https://nrw.social/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> : Consider a binary operation from [0,1] to [0,1] with properties<br />1. commutative<br />2. associative<br />3. a+0 = a<br />4. a+1 = 1<br />5. a+b &gt; a for a,b between 0 and 1</p><p>Examples: (a+b)/(1+ab) addition of velocities in special relativity or P(A)+P(B) = P(A union B) - P(A intersection B) from probability theory, the latter only being somewhat of an example.</p><p>Do these types of operations have a name and some theory attached? (Note: no inverse -&gt; not a group)?</p><p><a href=\"https://nrw.social/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://nrw.social/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://nrw.social/tags/categorytheory\" class=\"mention hashtag\" rel=\"tag\">#<span>categorytheory</span></a></p>", "contentMap": { "de": "<p><a href=\"https://nrw.social/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> : Consider a binary operation from [0,1] to [0,1] with properties<br />1. commutative<br />2. associative<br />3. a+0 = a<br />4. a+1 = 1<br />5. a+b &gt; a for a,b between 0 and 1</p><p>Examples: (a+b)/(1+ab) addition of velocities in special relativity or P(A)+P(B) = P(A union B) - P(A intersection B) from probability theory, the latter only being somewhat of an example.</p><p>Do these types of operations have a name and some theory attached? (Note: no inverse -&gt; not a group)?</p><p><a href=\"https://nrw.social/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://nrw.social/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://nrw.social/tags/categorytheory\" class=\"mention hashtag\" rel=\"tag\">#<span>categorytheory</span></a></p>" }, "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://nrw.social/tags/math", "name": "#math" }, { "type": "Hashtag", "href": "https://nrw.social/tags/mathematics", "name": "#mathematics" }, { "type": "Hashtag", "href": "https://nrw.social/tags/Algebra", "name": "#Algebra" }, { "type": "Hashtag", "href": "https://nrw.social/tags/categorytheory", "name": "#categorytheory" } ], "replies": { "id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/replies?only_other_accounts=true&page=true", "partOf": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/replies", "items": [] } }, "likes": { "id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/likes", "type": "Collection", "totalItems": 2 }, "shares": { "id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/shares", "type": "Collection", "totalItems": 3 } }