A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-10-18T07:54:35Z",
"url": "https://nrw.social/@HaraldKi/113327346535864978",
"attributedTo": "https://nrw.social/users/HaraldKi",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://nrw.social/users/HaraldKi/followers"
],
"sensitive": false,
"atomUri": "https://nrw.social/users/HaraldKi/statuses/113327346535864978",
"inReplyToAtomUri": null,
"conversation": "tag:nrw.social,2024-10-18:objectId=88787135:objectType=Conversation",
"content": "<p><a href=\"https://nrw.social/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> : Consider a binary operation from [0,1] to [0,1] with properties<br />1. commutative<br />2. associative<br />3. a+0 = a<br />4. a+1 = 1<br />5. a+b > a for a,b between 0 and 1</p><p>Examples: (a+b)/(1+ab) addition of velocities in special relativity or P(A)+P(B) = P(A union B) - P(A intersection B) from probability theory, the latter only being somewhat of an example.</p><p>Do these types of operations have a name and some theory attached? (Note: no inverse -> not a group)?</p><p><a href=\"https://nrw.social/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://nrw.social/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://nrw.social/tags/categorytheory\" class=\"mention hashtag\" rel=\"tag\">#<span>categorytheory</span></a></p>",
"contentMap": {
"de": "<p><a href=\"https://nrw.social/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> : Consider a binary operation from [0,1] to [0,1] with properties<br />1. commutative<br />2. associative<br />3. a+0 = a<br />4. a+1 = 1<br />5. a+b > a for a,b between 0 and 1</p><p>Examples: (a+b)/(1+ab) addition of velocities in special relativity or P(A)+P(B) = P(A union B) - P(A intersection B) from probability theory, the latter only being somewhat of an example.</p><p>Do these types of operations have a name and some theory attached? (Note: no inverse -> not a group)?</p><p><a href=\"https://nrw.social/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://nrw.social/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://nrw.social/tags/categorytheory\" class=\"mention hashtag\" rel=\"tag\">#<span>categorytheory</span></a></p>"
},
"attachment": [],
"tag": [
{
"type": "Hashtag",
"href": "https://nrw.social/tags/math",
"name": "#math"
},
{
"type": "Hashtag",
"href": "https://nrw.social/tags/mathematics",
"name": "#mathematics"
},
{
"type": "Hashtag",
"href": "https://nrw.social/tags/Algebra",
"name": "#Algebra"
},
{
"type": "Hashtag",
"href": "https://nrw.social/tags/categorytheory",
"name": "#categorytheory"
}
],
"replies": {
"id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/replies?only_other_accounts=true&page=true",
"partOf": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/replies",
"items": []
}
},
"likes": {
"id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/likes",
"type": "Collection",
"totalItems": 2
},
"shares": {
"id": "https://nrw.social/users/HaraldKi/statuses/113327346535864978/shares",
"type": "Collection",
"totalItems": 3
}
}