A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://mstdn.social/users/stevensanderson/statuses/112201636364865018",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-04-02T12:31:41Z",
"url": "https://mstdn.social/@stevensanderson/112201636364865018",
"attributedTo": "https://mstdn.social/users/stevensanderson",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mstdn.social/users/stevensanderson/followers"
],
"sensitive": false,
"atomUri": "https://mstdn.social/users/stevensanderson/statuses/112201636364865018",
"inReplyToAtomUri": null,
"conversation": "tag:mstdn.social,2024-04-02:objectId=358304807:objectType=Conversation",
"content": "<p>Ever struggle with features in your data overshadowing others due to different scales? Normalization can be your hero!</p><p>In R, there are ways to transform your data for a more even playing field. This post explores two popular methods:</p><p>1. Z-score normalization<br />2. Min-max scaling</p><p><a href=\"https://mstdn.social/tags/R\" class=\"mention hashtag\" rel=\"tag\">#<span>R</span></a> <a href=\"https://mstdn.social/tags/RStats\" class=\"mention hashtag\" rel=\"tag\">#<span>RStats</span></a> <a href=\"https://mstdn.social/tags/RProgramming\" class=\"mention hashtag\" rel=\"tag\">#<span>RProgramming</span></a> <a href=\"https://mstdn.social/tags/Coding\" class=\"mention hashtag\" rel=\"tag\">#<span>Coding</span></a> <a href=\"https://mstdn.social/tags/DataScience\" class=\"mention hashtag\" rel=\"tag\">#<span>DataScience</span></a> <a href=\"https://mstdn.social/tags/DataScientist\" class=\"mention hashtag\" rel=\"tag\">#<span>DataScientist</span></a> <a href=\"https://mstdn.social/tags/Innovation\" class=\"mention hashtag\" rel=\"tag\">#<span>Innovation</span></a> <a href=\"https://mstdn.social/tags/Technology\" class=\"mention hashtag\" rel=\"tag\">#<span>Technology</span></a> <a href=\"https://mstdn.social/tags/Data\" class=\"mention hashtag\" rel=\"tag\">#<span>Data</span></a> <a href=\"https://mstdn.social/tags/PreProcessing\" class=\"mention hashtag\" rel=\"tag\">#<span>PreProcessing</span></a> <a href=\"https://mstdn.social/tags/DataProcessing\" class=\"mention hashtag\" rel=\"tag\">#<span>DataProcessing</span></a> <a href=\"https://mstdn.social/tags/scale\" class=\"mention hashtag\" rel=\"tag\">#<span>scale</span></a></p><p>Post: <a href=\"https://www.spsanderson.com/steveondata/posts/2024-04-02/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">spsanderson.com/steveondata/po</span><span class=\"invisible\">sts/2024-04-02/</span></a></p>",
"contentMap": {
"en": "<p>Ever struggle with features in your data overshadowing others due to different scales? Normalization can be your hero!</p><p>In R, there are ways to transform your data for a more even playing field. This post explores two popular methods:</p><p>1. Z-score normalization<br />2. Min-max scaling</p><p><a href=\"https://mstdn.social/tags/R\" class=\"mention hashtag\" rel=\"tag\">#<span>R</span></a> <a href=\"https://mstdn.social/tags/RStats\" class=\"mention hashtag\" rel=\"tag\">#<span>RStats</span></a> <a href=\"https://mstdn.social/tags/RProgramming\" class=\"mention hashtag\" rel=\"tag\">#<span>RProgramming</span></a> <a href=\"https://mstdn.social/tags/Coding\" class=\"mention hashtag\" rel=\"tag\">#<span>Coding</span></a> <a href=\"https://mstdn.social/tags/DataScience\" class=\"mention hashtag\" rel=\"tag\">#<span>DataScience</span></a> <a href=\"https://mstdn.social/tags/DataScientist\" class=\"mention hashtag\" rel=\"tag\">#<span>DataScientist</span></a> <a href=\"https://mstdn.social/tags/Innovation\" class=\"mention hashtag\" rel=\"tag\">#<span>Innovation</span></a> <a href=\"https://mstdn.social/tags/Technology\" class=\"mention hashtag\" rel=\"tag\">#<span>Technology</span></a> <a href=\"https://mstdn.social/tags/Data\" class=\"mention hashtag\" rel=\"tag\">#<span>Data</span></a> <a href=\"https://mstdn.social/tags/PreProcessing\" class=\"mention hashtag\" rel=\"tag\">#<span>PreProcessing</span></a> <a href=\"https://mstdn.social/tags/DataProcessing\" class=\"mention hashtag\" rel=\"tag\">#<span>DataProcessing</span></a> <a href=\"https://mstdn.social/tags/scale\" class=\"mention hashtag\" rel=\"tag\">#<span>scale</span></a></p><p>Post: <a href=\"https://www.spsanderson.com/steveondata/posts/2024-04-02/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">spsanderson.com/steveondata/po</span><span class=\"invisible\">sts/2024-04-02/</span></a></p>"
},
"attachment": [
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mstdn.social/media_attachments/files/112/201/617/267/360/952/original/7796c29ee7034ff9.png",
"name": null,
"blurhash": "UWDTIyj[-=jsxuj@axfQ_4f6Rjfkt8azWBfj",
"width": 1110,
"height": 562
},
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mstdn.social/media_attachments/files/112/201/617/264/734/273/original/a9fc0b4bde053a7a.png",
"name": null,
"blurhash": "UVDTFqj[.8jZxuj@aea}_4jZRifkt8a#WBjs",
"width": 990,
"height": 598
},
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mstdn.social/media_attachments/files/112/201/617/283/467/315/original/fe0860ba00aaba87.png",
"name": null,
"blurhash": "UTBW-_kC%Njsxujsayjt_4f6WBj[tRfRaxfQ",
"width": 2048,
"height": 748
}
],
"tag": [
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/r",
"name": "#r"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/RStats",
"name": "#RStats"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/rprogramming",
"name": "#rprogramming"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/Coding",
"name": "#Coding"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/DataScience",
"name": "#DataScience"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/DataScientist",
"name": "#DataScientist"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/innovation",
"name": "#innovation"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/Technology",
"name": "#Technology"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/Data",
"name": "#Data"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/preprocessing",
"name": "#preprocessing"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/dataprocessing",
"name": "#dataprocessing"
},
{
"type": "Hashtag",
"href": "https://mstdn.social/tags/scale",
"name": "#scale"
}
],
"replies": {
"id": "https://mstdn.social/users/stevensanderson/statuses/112201636364865018/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mstdn.social/users/stevensanderson/statuses/112201636364865018/replies?only_other_accounts=true&page=true",
"partOf": "https://mstdn.social/users/stevensanderson/statuses/112201636364865018/replies",
"items": []
}
},
"likes": {
"id": "https://mstdn.social/users/stevensanderson/statuses/112201636364865018/likes",
"type": "Collection",
"totalItems": 3
},
"shares": {
"id": "https://mstdn.social/users/stevensanderson/statuses/112201636364865018/shares",
"type": "Collection",
"totalItems": 1
}
}