A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
}
}
],
"id": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies",
"type": "Collection",
"first": {
"id": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies?page=true",
"type": "CollectionPage",
"next": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies?only_other_accounts=true&page=true",
"partOf": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies",
"items": [
{
"id": "https://mstdn.social/users/Zamfr/statuses/113533545158497300",
"type": "Note",
"summary": null,
"inReplyTo": "https://mstdn.social/users/Zamfr/statuses/113533403873824590",
"published": "2024-11-23T17:53:37Z",
"url": "https://mstdn.social/@Zamfr/113533545158497300",
"attributedTo": "https://mstdn.social/users/Zamfr",
"to": [
"https://mstdn.social/users/Zamfr/followers"
],
"cc": [
"https://www.w3.org/ns/activitystreams#Public",
"https://sauropods.win/users/futurebird"
],
"sensitive": false,
"atomUri": "https://mstdn.social/users/Zamfr/statuses/113533545158497300",
"inReplyToAtomUri": "https://mstdn.social/users/Zamfr/statuses/113533403873824590",
"conversation": "tag:sauropods.win,2024-11-23:objectId=37758032:objectType=Conversation",
"content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://sauropods.win/@futurebird\" class=\"u-url mention\">@<span>futurebird</span></a></span> </p><p>Later he has introduced the complex derivative as 'amplitwist', where the imaginary part is the twist of the mapping.</p><p>Then you can define exp(z) as the complex function whose complex derivative equals itself, and that becomes a circle for exp(iy)</p>",
"contentMap": {
"en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://sauropods.win/@futurebird\" class=\"u-url mention\">@<span>futurebird</span></a></span> </p><p>Later he has introduced the complex derivative as 'amplitwist', where the imaginary part is the twist of the mapping.</p><p>Then you can define exp(z) as the complex function whose complex derivative equals itself, and that becomes a circle for exp(iy)</p>"
},
"updated": "2024-11-23T18:54:42Z",
"attachment": [
{
"type": "Document",
"mediaType": "image/jpeg",
"url": "https://media.mstdn.social/media_attachments/files/113/533/546/739/080/237/original/6a06809f1c7cc8a8.jpg",
"name": null,
"blurhash": "U9FrR:R5NGR+_2E2WCoe0LVss:kCxuS4NGj[",
"width": 2160,
"height": 3838
}
],
"tag": [
{
"type": "Mention",
"href": "https://sauropods.win/users/futurebird",
"name": "@futurebird@sauropods.win"
}
],
"replies": {
"id": "https://mstdn.social/users/Zamfr/statuses/113533545158497300/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mstdn.social/users/Zamfr/statuses/113533545158497300/replies?only_other_accounts=true&page=true",
"partOf": "https://mstdn.social/users/Zamfr/statuses/113533545158497300/replies",
"items": []
}
}
}
]
}
}