ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" } } ], "id": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies", "type": "Collection", "first": { "id": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies?page=true", "type": "CollectionPage", "next": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies?only_other_accounts=true&page=true", "partOf": "https://mstdn.social/users/Zamfr/statuses/113533403873824590/replies", "items": [ { "id": "https://mstdn.social/users/Zamfr/statuses/113533545158497300", "type": "Note", "summary": null, "inReplyTo": "https://mstdn.social/users/Zamfr/statuses/113533403873824590", "published": "2024-11-23T17:53:37Z", "url": "https://mstdn.social/@Zamfr/113533545158497300", "attributedTo": "https://mstdn.social/users/Zamfr", "to": [ "https://mstdn.social/users/Zamfr/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public", "https://sauropods.win/users/futurebird" ], "sensitive": false, "atomUri": "https://mstdn.social/users/Zamfr/statuses/113533545158497300", "inReplyToAtomUri": "https://mstdn.social/users/Zamfr/statuses/113533403873824590", "conversation": "tag:sauropods.win,2024-11-23:objectId=37758032:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://sauropods.win/@futurebird\" class=\"u-url mention\">@<span>futurebird</span></a></span> </p><p>Later he has introduced the complex derivative as &#39;amplitwist&#39;, where the imaginary part is the twist of the mapping.</p><p>Then you can define exp(z) as the complex function whose complex derivative equals itself, and that becomes a circle for exp(iy)</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://sauropods.win/@futurebird\" class=\"u-url mention\">@<span>futurebird</span></a></span> </p><p>Later he has introduced the complex derivative as &#39;amplitwist&#39;, where the imaginary part is the twist of the mapping.</p><p>Then you can define exp(z) as the complex function whose complex derivative equals itself, and that becomes a circle for exp(iy)</p>" }, "updated": "2024-11-23T18:54:42Z", "attachment": [ { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mstdn.social/media_attachments/files/113/533/546/739/080/237/original/6a06809f1c7cc8a8.jpg", "name": null, "blurhash": "U9FrR:R5NGR+_2E2WCoe0LVss:kCxuS4NGj[", "width": 2160, "height": 3838 } ], "tag": [ { "type": "Mention", "href": "https://sauropods.win/users/futurebird", "name": "@futurebird@sauropods.win" } ], "replies": { "id": "https://mstdn.social/users/Zamfr/statuses/113533545158497300/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mstdn.social/users/Zamfr/statuses/113533545158497300/replies?only_other_accounts=true&page=true", "partOf": "https://mstdn.social/users/Zamfr/statuses/113533545158497300/replies", "items": [] } } } ] } }