A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://me.dm/users/KronoMoon/statuses/113568183281735289",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-11-29T20:42:32Z",
"url": "https://me.dm/@KronoMoon/113568183281735289",
"attributedTo": "https://me.dm/users/KronoMoon",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://me.dm/users/KronoMoon/followers"
],
"sensitive": false,
"atomUri": "https://me.dm/users/KronoMoon/statuses/113568183281735289",
"inReplyToAtomUri": null,
"conversation": "tag:me.dm,2024-11-29:objectId=74774016:objectType=Conversation",
"content": "<p> <br />❛❛ Teen <a href=\"https://me.dm/tags/Mathematicians\" class=\"mention hashtag\" rel=\"tag\">#<span>Mathematicians</span></a> Tie <a href=\"https://me.dm/tags/Knots\" class=\"mention hashtag\" rel=\"tag\">#<span>Knots</span></a> Through a <a href=\"https://me.dm/tags/Mind\" class=\"mention hashtag\" rel=\"tag\">#<span>Mind</span></a>-Blowing Fractal ❜❜ </p><p>Three high schoolers and their mentor revisited a century-old <a href=\"https://me.dm/tags/theorem\" class=\"mention hashtag\" rel=\"tag\">#<span>theorem</span></a> to prove that all <a href=\"https://me.dm/tags/knots\" class=\"mention hashtag\" rel=\"tag\">#<span>knots</span></a> can be found in a <a href=\"https://me.dm/tags/fractal\" class=\"mention hashtag\" rel=\"tag\">#<span>fractal</span></a> called the <a href=\"https://me.dm/tags/MengerSponge\" class=\"mention hashtag\" rel=\"tag\">#<span>MengerSponge</span></a>. <br />Gregory Barber for <a href=\"https://me.dm/tags/QuantaMagazine\" class=\"mention hashtag\" rel=\"tag\">#<span>QuantaMagazine</span></a> </p><p>🔗 <a href=\"https://QuantaMagazine.org/teen-mathematicians-tie-knots-through-a-mind-blowing-fractal-20241126/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">QuantaMagazine.org/teen-mathem</span><span class=\"invisible\">aticians-tie-knots-through-a-mind-blowing-fractal-20241126/</span></a> 2024 Nov 26 ce <br />🔗 <a href=\"https://Wikipedia.org/wiki/Menger_sponge\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">Wikipedia.org/wiki/Menger_spon</span><span class=\"invisible\">ge</span></a> … <a href=\"https://me.dm/tags/MengerSponge\" class=\"mention hashtag\" rel=\"tag\">#<span>MengerSponge</span></a> <br />🔗 <a href=\"https://Wikipedia.org/wiki/Topology\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">Wikipedia.org/wiki/Topology</span><span class=\"invisible\"></span></a> … <a href=\"https://me.dm/tags/Topology\" class=\"mention hashtag\" rel=\"tag\">#<span>Topology</span></a> </p><p><a href=\"https://me.dm/tags/Community\" class=\"mention hashtag\" rel=\"tag\">#<span>Community</span></a> <a href=\"https://me.dm/tags/TimeTravel\" class=\"mention hashtag\" rel=\"tag\">#<span>TimeTravel</span></a> <a href=\"https://me.dm/tags/Research\" class=\"mention hashtag\" rel=\"tag\">#<span>Research</span></a> <a href=\"https://me.dm/tags/maths\" class=\"mention hashtag\" rel=\"tag\">#<span>maths</span></a> <a href=\"https://me.dm/tags/dimensions\" class=\"mention hashtag\" rel=\"tag\">#<span>dimensions</span></a> <a href=\"https://me.dm/tags/Kronodon\" class=\"mention hashtag\" rel=\"tag\">#<span>Kronodon</span></a></p>",
"contentMap": {
"en": "<p> <br />❛❛ Teen <a href=\"https://me.dm/tags/Mathematicians\" class=\"mention hashtag\" rel=\"tag\">#<span>Mathematicians</span></a> Tie <a href=\"https://me.dm/tags/Knots\" class=\"mention hashtag\" rel=\"tag\">#<span>Knots</span></a> Through a <a href=\"https://me.dm/tags/Mind\" class=\"mention hashtag\" rel=\"tag\">#<span>Mind</span></a>-Blowing Fractal ❜❜ </p><p>Three high schoolers and their mentor revisited a century-old <a href=\"https://me.dm/tags/theorem\" class=\"mention hashtag\" rel=\"tag\">#<span>theorem</span></a> to prove that all <a href=\"https://me.dm/tags/knots\" class=\"mention hashtag\" rel=\"tag\">#<span>knots</span></a> can be found in a <a href=\"https://me.dm/tags/fractal\" class=\"mention hashtag\" rel=\"tag\">#<span>fractal</span></a> called the <a href=\"https://me.dm/tags/MengerSponge\" class=\"mention hashtag\" rel=\"tag\">#<span>MengerSponge</span></a>. <br />Gregory Barber for <a href=\"https://me.dm/tags/QuantaMagazine\" class=\"mention hashtag\" rel=\"tag\">#<span>QuantaMagazine</span></a> </p><p>🔗 <a href=\"https://QuantaMagazine.org/teen-mathematicians-tie-knots-through-a-mind-blowing-fractal-20241126/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">QuantaMagazine.org/teen-mathem</span><span class=\"invisible\">aticians-tie-knots-through-a-mind-blowing-fractal-20241126/</span></a> 2024 Nov 26 ce <br />🔗 <a href=\"https://Wikipedia.org/wiki/Menger_sponge\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">Wikipedia.org/wiki/Menger_spon</span><span class=\"invisible\">ge</span></a> … <a href=\"https://me.dm/tags/MengerSponge\" class=\"mention hashtag\" rel=\"tag\">#<span>MengerSponge</span></a> <br />🔗 <a href=\"https://Wikipedia.org/wiki/Topology\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">Wikipedia.org/wiki/Topology</span><span class=\"invisible\"></span></a> … <a href=\"https://me.dm/tags/Topology\" class=\"mention hashtag\" rel=\"tag\">#<span>Topology</span></a> </p><p><a href=\"https://me.dm/tags/Community\" class=\"mention hashtag\" rel=\"tag\">#<span>Community</span></a> <a href=\"https://me.dm/tags/TimeTravel\" class=\"mention hashtag\" rel=\"tag\">#<span>TimeTravel</span></a> <a href=\"https://me.dm/tags/Research\" class=\"mention hashtag\" rel=\"tag\">#<span>Research</span></a> <a href=\"https://me.dm/tags/maths\" class=\"mention hashtag\" rel=\"tag\">#<span>maths</span></a> <a href=\"https://me.dm/tags/dimensions\" class=\"mention hashtag\" rel=\"tag\">#<span>dimensions</span></a> <a href=\"https://me.dm/tags/Kronodon\" class=\"mention hashtag\" rel=\"tag\">#<span>Kronodon</span></a></p>"
},
"updated": "2024-11-30T16:51:04Z",
"attachment": [
{
"type": "Document",
"mediaType": "video/mp4",
"url": "https://media.me.dm/media_attachments/files/113/568/118/739/012/149/original/b8c3c39f2c4b87ba.mp4",
"name": "Animated video from Quanta Magazine showing fractal cube known as a Menger sponge, which has square holes punched through every surface, then punched again & again, forming a kind of complex & symmetrical 3-D grid, with all angles being 90-degrees. The rotating sponge is rendered in blue & green, but that's just for illustration. It's fun and disorienting to watch. Rotating dimensions generally are a major concern of many-worlds theories, and particularly Time Travel. \n\nhttps://www.quantamagazine.org/teen-mathematicians-tie-knots-through-a-mind-blowing-fractal-20241126/ \n\nhttps://www.quantamagazine.org/wp-content/uploads/2024/11/KnotsInFractals-crDaveWhyte-Lede.mp4 \n",
"blurhash": "UH4yZzfRQRf6fkfQf6fQQlfQu4fRf6fQfkfQ",
"focalPoint": [
0,
0
],
"width": 2880,
"height": 1620
}
],
"tag": [
{
"type": "Hashtag",
"href": "https://me.dm/tags/mathematicians",
"name": "#mathematicians"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/knots",
"name": "#knots"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/mind",
"name": "#mind"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/theorem",
"name": "#theorem"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/fractal",
"name": "#fractal"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/mengersponge",
"name": "#mengersponge"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/quantamagazine",
"name": "#quantamagazine"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/topology",
"name": "#topology"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/community",
"name": "#community"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/timetravel",
"name": "#timetravel"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/research",
"name": "#research"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/maths",
"name": "#maths"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/kronodon",
"name": "#kronodon"
},
{
"type": "Hashtag",
"href": "https://me.dm/tags/dimensions",
"name": "#dimensions"
}
],
"replies": {
"id": "https://me.dm/users/KronoMoon/statuses/113568183281735289/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://me.dm/users/KronoMoon/statuses/113568183281735289/replies?only_other_accounts=true&page=true",
"partOf": "https://me.dm/users/KronoMoon/statuses/113568183281735289/replies",
"items": []
}
}
}