ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978", "type": "Note", "summary": null, "inReplyTo": "https://types.pl/users/maxsnew/statuses/110295642103171922", "published": "2023-05-02T07:02:21Z", "url": "https://mathstodon.xyz/@varkor/110297805079408978", "attributedTo": "https://mathstodon.xyz/users/varkor", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/varkor/followers", "https://types.pl/users/maxsnew" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978", "inReplyToAtomUri": "https://types.pl/users/maxsnew/statuses/110295642103171922", "conversation": "tag:types.pl,2023-05-01:objectId=10857997:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://types.pl/@maxsnew\" class=\"u-url mention\">@<span>maxsnew</span></a></span> Zhen Lin has a nice characterisation of the finitary algebraic theories whose categories of algebras have finite biproducts (<a href=\"https://math.stackexchange.com/a/1102762\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">math.stackexchange.com/a/11027</span><span class=\"invisible\">62</span></a>), which shows that commutativity is not necessary.</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://types.pl/@maxsnew\" class=\"u-url mention\">@<span>maxsnew</span></a></span> Zhen Lin has a nice characterisation of the finitary algebraic theories whose categories of algebras have finite biproducts (<a href=\"https://math.stackexchange.com/a/1102762\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">math.stackexchange.com/a/11027</span><span class=\"invisible\">62</span></a>), which shows that commutativity is not necessary.</p>" }, "attachment": [], "tag": [ { "type": "Mention", "href": "https://types.pl/users/maxsnew", "name": "@maxsnew@types.pl" } ], "replies": { "id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/likes", "type": "Collection", "totalItems": 10 }, "shares": { "id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/shares", "type": "Collection", "totalItems": 4 } }