A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978",
"type": "Note",
"summary": null,
"inReplyTo": "https://types.pl/users/maxsnew/statuses/110295642103171922",
"published": "2023-05-02T07:02:21Z",
"url": "https://mathstodon.xyz/@varkor/110297805079408978",
"attributedTo": "https://mathstodon.xyz/users/varkor",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/varkor/followers",
"https://types.pl/users/maxsnew"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978",
"inReplyToAtomUri": "https://types.pl/users/maxsnew/statuses/110295642103171922",
"conversation": "tag:types.pl,2023-05-01:objectId=10857997:objectType=Conversation",
"content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://types.pl/@maxsnew\" class=\"u-url mention\">@<span>maxsnew</span></a></span> Zhen Lin has a nice characterisation of the finitary algebraic theories whose categories of algebras have finite biproducts (<a href=\"https://math.stackexchange.com/a/1102762\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">math.stackexchange.com/a/11027</span><span class=\"invisible\">62</span></a>), which shows that commutativity is not necessary.</p>",
"contentMap": {
"en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://types.pl/@maxsnew\" class=\"u-url mention\">@<span>maxsnew</span></a></span> Zhen Lin has a nice characterisation of the finitary algebraic theories whose categories of algebras have finite biproducts (<a href=\"https://math.stackexchange.com/a/1102762\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">math.stackexchange.com/a/11027</span><span class=\"invisible\">62</span></a>), which shows that commutativity is not necessary.</p>"
},
"attachment": [],
"tag": [
{
"type": "Mention",
"href": "https://types.pl/users/maxsnew",
"name": "@maxsnew@types.pl"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/likes",
"type": "Collection",
"totalItems": 10
},
"shares": {
"id": "https://mathstodon.xyz/users/varkor/statuses/110297805079408978/shares",
"type": "Collection",
"totalItems": 4
}
}