ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag", "Emoji": "toot:Emoji" } ], "id": "https://mathstodon.xyz/users/unknown/statuses/102121931617787208", "type": "Note", "summary": "I am sorry because I write the following in Japanese.", "inReplyTo": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823", "published": "2019-05-19T09:10:13Z", "url": "https://mathstodon.xyz/@unknown/102121931617787208", "attributedTo": "https://mathstodon.xyz/users/unknown", "to": [ "https://mathstodon.xyz/users/unknown/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": true, "atomUri": "https://mathstodon.xyz/users/unknown/statuses/102121931617787208", "inReplyToAtomUri": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823", "conversation": "tag:mathstodon.xyz,2019-05-19:objectId=4682364:objectType=Conversation", "content": "<p>承前の前者は「岐阜多様定理」と仮称しておくけど、自明な二項しか示さず多様もクソもヘッタクレもねえだろ的に一般化したら良い恒等式が得られてアザースという話。<br />承前の後者は、5自由度しかないと思う一般四角形に(四辺の長さ+)内接円があると指定すれば形が定まるんじゃねえのか的に、生放送のコメントで意見が分かれたので、改めて計算したら向かい合う辺の長さの和が同じ四角形の(ある角度の範囲の)全てで「内接円四角形」(仮称)となるという、まあやってみなきゃ分からんわ的な終。<br />なお久々すぎて固定ツイから一つを解除しようとして誤って消してしまった↓を再投稿 <a href=\"https://mathstodon.xyz/tags/%E9%9D%9E%E5%85%AC%E5%BC%8F%E5%BC%95%E7%94%A8BT\" class=\"mention hashtag\" rel=\"tag\">#<span>非公式引用BT</span></a> Arnold Schwarzenegger &quot;I&#39;m Back&quot;! Now I get the this geometrical property, thankful to the God! :qed:<br />(そういえばHubzillaと比べてマストドンには(flaredプレビューや)編集ないけど、DELETE&amp;REDRAFT機能!</p>", "contentMap": { "ja": "<p>承前の前者は「岐阜多様定理」と仮称しておくけど、自明な二項しか示さず多様もクソもヘッタクレもねえだろ的に一般化したら良い恒等式が得られてアザースという話。<br />承前の後者は、5自由度しかないと思う一般四角形に(四辺の長さ+)内接円があると指定すれば形が定まるんじゃねえのか的に、生放送のコメントで意見が分かれたので、改めて計算したら向かい合う辺の長さの和が同じ四角形の(ある角度の範囲の)全てで「内接円四角形」(仮称)となるという、まあやってみなきゃ分からんわ的な終。<br />なお久々すぎて固定ツイから一つを解除しようとして誤って消してしまった↓を再投稿 <a href=\"https://mathstodon.xyz/tags/%E9%9D%9E%E5%85%AC%E5%BC%8F%E5%BC%95%E7%94%A8BT\" class=\"mention hashtag\" rel=\"tag\">#<span>非公式引用BT</span></a> Arnold Schwarzenegger &quot;I&#39;m Back&quot;! Now I get the this geometrical property, thankful to the God! :qed:<br />(そういえばHubzillaと比べてマストドンには(flaredプレビューや)編集ないけど、DELETE&amp;REDRAFT機能!</p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/000/789/793/original/e8466f3d0a76800b.png", "name": null, "blurhash": null, "width": 1805, "height": 908 } ], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/%E9%9D%9E%E5%85%AC%E5%BC%8F%E5%BC%95%E7%94%A8bt", "name": "#非公式引用bt" }, { "id": "https://mathstodon.xyz/emojis/5463", "type": "Emoji", "name": ":qed:", "updated": "2018-04-18T07:54:49Z", "icon": { "type": "Image", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/custom_emojis/images/000/005/463/original/qed.png" } } ], "replies": { "id": "https://mathstodon.xyz/users/unknown/statuses/102121931617787208/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/102121931617787208/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/102121931617787208/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/unknown/statuses/102121931617787208/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mathstodon.xyz/users/unknown/statuses/102121931617787208/shares", "type": "Collection", "totalItems": 0 } }