A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823",
"type": "Note",
"summary": "Recently I was taught the following two expressions formula,",
"inReplyTo": null,
"published": "2019-05-19T08:36:48Z",
"url": "https://mathstodon.xyz/@unknown/102121800221032823",
"attributedTo": "https://mathstodon.xyz/users/unknown",
"to": [
"https://mathstodon.xyz/users/unknown/followers"
],
"cc": [
"https://www.w3.org/ns/activitystreams#Public"
],
"sensitive": true,
"atomUri": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2019-05-19:objectId=4682364:objectType=Conversation",
"content": "<p>From <a href=\"https://youtu.be/dO40DZk-qNU\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">youtu.be/dO40DZk-qNU</span><span class=\"invisible\"></span></a> , I found <a href=\"https://www.wolframalpha.com/input/?i=(1%2Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">wolframalpha.com/input/?i=(1%2</span><span class=\"invisible\">Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5</span></a> , Still I can't prove this proof yet.<br />It does not matter at all, <br /><a href=\"https://mathstodon.xyz/tags/ENWP\" class=\"mention hashtag\" rel=\"tag\">#<span>ENWP</span></a> "Tangential quadrilateral" <a href=\"https://en.wikipedia.org/wiki/Tangential_quadrilateral\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Tangenti</span><span class=\"invisible\">al_quadrilateral</span></a> has an inscribed circle if only three sides (The fourth side must be \\(a+b-c\\) .) are decided (The shape is completely determined by the determination of another angle).<br />Thanks from <a href=\"https://twitter.com/takatasennsei\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">twitter.com/takatasennsei</span><span class=\"invisible\"></span></a> !</p>",
"contentMap": {
"en": "<p>From <a href=\"https://youtu.be/dO40DZk-qNU\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">youtu.be/dO40DZk-qNU</span><span class=\"invisible\"></span></a> , I found <a href=\"https://www.wolframalpha.com/input/?i=(1%2Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">wolframalpha.com/input/?i=(1%2</span><span class=\"invisible\">Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5</span></a> , Still I can't prove this proof yet.<br />It does not matter at all, <br /><a href=\"https://mathstodon.xyz/tags/ENWP\" class=\"mention hashtag\" rel=\"tag\">#<span>ENWP</span></a> "Tangential quadrilateral" <a href=\"https://en.wikipedia.org/wiki/Tangential_quadrilateral\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Tangenti</span><span class=\"invisible\">al_quadrilateral</span></a> has an inscribed circle if only three sides (The fourth side must be \\(a+b-c\\) .) are decided (The shape is completely determined by the determination of another angle).<br />Thanks from <a href=\"https://twitter.com/takatasennsei\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">twitter.com/takatasennsei</span><span class=\"invisible\"></span></a> !</p>"
},
"attachment": [
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mathstodon.xyz/media_attachments/files/000/971/264/original/7323fffa01e745ff.png",
"name": null,
"blurhash": null,
"focalPoint": [
0.03,
0.45
],
"width": 361,
"height": 201
},
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mathstodon.xyz/media_attachments/files/000/971/274/original/c4ed173b4c5c7ab7.png",
"name": null,
"blurhash": null,
"width": 640,
"height": 785
}
],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/enwp",
"name": "#enwp"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/replies?min_id=102121931617787208&page=true",
"partOf": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/replies",
"items": [
"https://mathstodon.xyz/users/unknown/statuses/102121931617787208"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/likes",
"type": "Collection",
"totalItems": 0
},
"shares": {
"id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/shares",
"type": "Collection",
"totalItems": 0
}
}