A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
}
}
],
"id": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies",
"type": "Collection",
"first": {
"id": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies?page=true",
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies",
"items": [
{
"id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628",
"type": "Note",
"summary": "Now, I am interested in the following three.",
"inReplyTo": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230",
"published": "2019-03-15T22:04:46Z",
"url": "https://mathstodon.xyz/@unknown/101756927091150628",
"attributedTo": "https://mathstodon.xyz/users/unknown",
"to": [
"https://mathstodon.xyz/users/unknown/followers"
],
"cc": [
"https://www.w3.org/ns/activitystreams#Public"
],
"sensitive": true,
"atomUri": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628",
"inReplyToAtomUri": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230",
"conversation": "tag:mathstodon.xyz,2019-03-12:objectId=3893096:objectType=Conversation",
"content": "<p>1: "Sums of three cubes" <a href=\"https://en.wikipedia.org/wiki/Sums_of_three_cubes\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sums_of_</span><span class=\"invisible\">three_cubes</span></a> has generalized parametric representation "A New Method in the Problem of Three Cubes" <a href=\"https://arxiv.org/abs/1802.06776\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1802.06776</span><span class=\"invisible\"></span></a> (cf. ex. Old article in Japanese <a href=\"http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/math0403.htm\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">asahi-net.or.jp/~KC2H-MSM/math</span><span class=\"invisible\">land/math04/math0403.htm</span></a> ).<br />2: DANIEL SCHER "A DOUBLE SPIRAL FROM DAVID HENDERSON" <a href=\"http://www.sineofthetimes.org/a-double-spiral-from-david-henderson/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">sineofthetimes.org/a-double-sp</span><span class=\"invisible\">iral-from-david-henderson/</span></a><br />3: Paul Bourke "Danzer Aperiodic Tiling" <a href=\"http://paulbourke.net/geometry/tilingplane/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">paulbourke.net/geometry/tiling</span><span class=\"invisible\">plane/</span></a> telling by GirihApp@Twitter <a href=\"https://twitter.com/GirihApp/status/1106615831742558208\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/GirihApp/status/11</span><span class=\"invisible\">06615831742558208</span></a> . I do similar one of the attached image</p>",
"contentMap": {
"ja": "<p>1: "Sums of three cubes" <a href=\"https://en.wikipedia.org/wiki/Sums_of_three_cubes\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sums_of_</span><span class=\"invisible\">three_cubes</span></a> has generalized parametric representation "A New Method in the Problem of Three Cubes" <a href=\"https://arxiv.org/abs/1802.06776\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1802.06776</span><span class=\"invisible\"></span></a> (cf. ex. Old article in Japanese <a href=\"http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/math0403.htm\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">asahi-net.or.jp/~KC2H-MSM/math</span><span class=\"invisible\">land/math04/math0403.htm</span></a> ).<br />2: DANIEL SCHER "A DOUBLE SPIRAL FROM DAVID HENDERSON" <a href=\"http://www.sineofthetimes.org/a-double-spiral-from-david-henderson/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">sineofthetimes.org/a-double-sp</span><span class=\"invisible\">iral-from-david-henderson/</span></a><br />3: Paul Bourke "Danzer Aperiodic Tiling" <a href=\"http://paulbourke.net/geometry/tilingplane/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">paulbourke.net/geometry/tiling</span><span class=\"invisible\">plane/</span></a> telling by GirihApp@Twitter <a href=\"https://twitter.com/GirihApp/status/1106615831742558208\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/GirihApp/status/11</span><span class=\"invisible\">06615831742558208</span></a> . I do similar one of the attached image</p>"
},
"attachment": [
{
"type": "Document",
"mediaType": "image/jpeg",
"url": "https://media.mathstodon.xyz/media_attachments/files/000/801/279/original/139c5f33f5b2acdd.jpg",
"name": null,
"blurhash": null,
"width": 1111,
"height": 1003
},
{
"type": "Document",
"mediaType": "image/jpeg",
"url": "https://media.mathstodon.xyz/media_attachments/files/000/801/280/original/c855df754141691e.jpg",
"name": null,
"blurhash": null,
"width": 975,
"height": 500
},
{
"type": "Document",
"mediaType": "image/jpeg",
"url": "https://media.mathstodon.xyz/media_attachments/files/000/801/281/original/52731338bd90ef34.jpg",
"name": null,
"blurhash": null,
"width": 900,
"height": 900
},
{
"type": "Document",
"mediaType": "image/jpeg",
"url": "https://media.mathstodon.xyz/media_attachments/files/000/801/282/original/2725347876db0be9.jpg",
"name": null,
"blurhash": null,
"width": 1200,
"height": 581
}
],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/likes",
"type": "Collection",
"totalItems": 1
},
"shares": {
"id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/shares",
"type": "Collection",
"totalItems": 0
}
}
]
}
}