ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" } } ], "id": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies", "type": "Collection", "first": { "id": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies?page=true", "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230/replies", "items": [ { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628", "type": "Note", "summary": "Now, I am interested in the following three.", "inReplyTo": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230", "published": "2019-03-15T22:04:46Z", "url": "https://mathstodon.xyz/@unknown/101756927091150628", "attributedTo": "https://mathstodon.xyz/users/unknown", "to": [ "https://mathstodon.xyz/users/unknown/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": true, "atomUri": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628", "inReplyToAtomUri": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230", "conversation": "tag:mathstodon.xyz,2019-03-12:objectId=3893096:objectType=Conversation", "content": "<p>1: &quot;Sums of three cubes&quot; <a href=\"https://en.wikipedia.org/wiki/Sums_of_three_cubes\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sums_of_</span><span class=\"invisible\">three_cubes</span></a> has generalized parametric representation &quot;A New Method in the Problem of Three Cubes&quot; <a href=\"https://arxiv.org/abs/1802.06776\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1802.06776</span><span class=\"invisible\"></span></a> (cf. ex. Old article in Japanese <a href=\"http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/math0403.htm\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">asahi-net.or.jp/~KC2H-MSM/math</span><span class=\"invisible\">land/math04/math0403.htm</span></a> ).<br />2: DANIEL SCHER &quot;A DOUBLE SPIRAL FROM DAVID HENDERSON&quot; <a href=\"http://www.sineofthetimes.org/a-double-spiral-from-david-henderson/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">sineofthetimes.org/a-double-sp</span><span class=\"invisible\">iral-from-david-henderson/</span></a><br />3: Paul Bourke &quot;Danzer Aperiodic Tiling&quot; <a href=\"http://paulbourke.net/geometry/tilingplane/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">paulbourke.net/geometry/tiling</span><span class=\"invisible\">plane/</span></a> telling by GirihApp@Twitter <a href=\"https://twitter.com/GirihApp/status/1106615831742558208\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/GirihApp/status/11</span><span class=\"invisible\">06615831742558208</span></a> . I do similar one of the attached image</p>", "contentMap": { "ja": "<p>1: &quot;Sums of three cubes&quot; <a href=\"https://en.wikipedia.org/wiki/Sums_of_three_cubes\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sums_of_</span><span class=\"invisible\">three_cubes</span></a> has generalized parametric representation &quot;A New Method in the Problem of Three Cubes&quot; <a href=\"https://arxiv.org/abs/1802.06776\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1802.06776</span><span class=\"invisible\"></span></a> (cf. ex. Old article in Japanese <a href=\"http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/math0403.htm\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">asahi-net.or.jp/~KC2H-MSM/math</span><span class=\"invisible\">land/math04/math0403.htm</span></a> ).<br />2: DANIEL SCHER &quot;A DOUBLE SPIRAL FROM DAVID HENDERSON&quot; <a href=\"http://www.sineofthetimes.org/a-double-spiral-from-david-henderson/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">sineofthetimes.org/a-double-sp</span><span class=\"invisible\">iral-from-david-henderson/</span></a><br />3: Paul Bourke &quot;Danzer Aperiodic Tiling&quot; <a href=\"http://paulbourke.net/geometry/tilingplane/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">paulbourke.net/geometry/tiling</span><span class=\"invisible\">plane/</span></a> telling by GirihApp@Twitter <a href=\"https://twitter.com/GirihApp/status/1106615831742558208\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/GirihApp/status/11</span><span class=\"invisible\">06615831742558208</span></a> . I do similar one of the attached image</p>" }, "attachment": [ { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/279/original/139c5f33f5b2acdd.jpg", "name": null, "blurhash": null, "width": 1111, "height": 1003 }, { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/280/original/c855df754141691e.jpg", "name": null, "blurhash": null, "width": 975, "height": 500 }, { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/281/original/52731338bd90ef34.jpg", "name": null, "blurhash": null, "width": 900, "height": 900 }, { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/282/original/2725347876db0be9.jpg", "name": null, "blurhash": null, "width": 1200, "height": 581 } ], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/shares", "type": "Collection", "totalItems": 0 } } ] } }