ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/unknown/collections/featured", "type": "OrderedCollection", "totalItems": 5, "orderedItems": [ { "id": "https://mathstodon.xyz/users/unknown/statuses/102722714965185401", "type": "Note", "summary": null, "inReplyTo": null, "published": "2019-09-02T11:37:19Z", "url": "https://mathstodon.xyz/@unknown/102722714965185401", "attributedTo": "https://mathstodon.xyz/users/unknown", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/unknown/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/unknown/statuses/102722714965185401", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2019-09-02:objectId=5964499:objectType=Conversation", "content": "<p>In August of Japan, the method of cutting pizza and cake into equal areas as shown in the figure was popular on Twitter! It can be found at the following URLs:<br /><a href=\"https://twitter.com/mathlava/status/1163796284760662017\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/mathlava/status/11</span><span class=\"invisible\">63796284760662017</span></a><br /><a href=\"https://twitter.com/5Hanayome/status/1164875472917811201\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/5Hanayome/status/1</span><span class=\"invisible\">164875472917811201</span></a><br />(I was most inspired by <a href=\"https://twitter.com/potetoichiro\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">twitter.com/potetoichiro</span><span class=\"invisible\"></span></a> .)<br />cf. <a href=\"https://zh.wikipedia.org/wiki/%E6%8A%AB%E8%96%A9%E5%AE%9A%E7%90%86#N=4%E7%9A%84%E6%83%85%E5%86%B5\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">zh.wikipedia.org/wiki/%E6%8A%A</span><span class=\"invisible\">B%E8%96%A9%E5%AE%9A%E7%90%86#N=4%E7%9A%84%E6%83%85%E5%86%B5</span></a><br />and <a href=\"https://arxiv.org/abs/1512.03794\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1512.03794</span><span class=\"invisible\"></span></a></p>", "contentMap": { "en": "<p>In August of Japan, the method of cutting pizza and cake into equal areas as shown in the figure was popular on Twitter! It can be found at the following URLs:<br /><a href=\"https://twitter.com/mathlava/status/1163796284760662017\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/mathlava/status/11</span><span class=\"invisible\">63796284760662017</span></a><br /><a href=\"https://twitter.com/5Hanayome/status/1164875472917811201\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/5Hanayome/status/1</span><span class=\"invisible\">164875472917811201</span></a><br />(I was most inspired by <a href=\"https://twitter.com/potetoichiro\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">twitter.com/potetoichiro</span><span class=\"invisible\"></span></a> .)<br />cf. <a href=\"https://zh.wikipedia.org/wiki/%E6%8A%AB%E8%96%A9%E5%AE%9A%E7%90%86#N=4%E7%9A%84%E6%83%85%E5%86%B5\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">zh.wikipedia.org/wiki/%E6%8A%A</span><span class=\"invisible\">B%E8%96%A9%E5%AE%9A%E7%90%86#N=4%E7%9A%84%E6%83%85%E5%86%B5</span></a><br />and <a href=\"https://arxiv.org/abs/1512.03794\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1512.03794</span><span class=\"invisible\"></span></a></p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/001/277/123/original/c441968822b9119e.png", "name": null, "blurhash": "UPNws8,,n5a+PStwrgOn3AWoS$V|{LS$Xxsp", "width": 1526, "height": 1073 }, { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/001/277/124/original/3e80d91d03d07066.png", "name": null, "blurhash": "ULQ9ZXz.A2^C2yK*rAx9ogbHjsa#;d#7TLSj", "width": 1500, "height": 1000 }, { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/001/277/125/original/b9ee53e2786c95df.png", "name": null, "blurhash": "UTOp*|ahaQnU9rxAjJv~+it0s9r?uaS#f|OZ", "width": 1200, "height": 800 }, { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/001/277/126/original/9ce0dde83ca6e7b7.png", "name": null, "blurhash": "UfPPy4W-bIW.|,nTfhnlzgWYj0a~74ouWCkR", "width": 1561, "height": 1049 } ], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/unknown/statuses/102722714965185401/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/102722714965185401/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/102722714965185401/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/unknown/statuses/102722714965185401/likes", "type": "Collection", "totalItems": 4 }, "shares": { "id": "https://mathstodon.xyz/users/unknown/statuses/102722714965185401/shares", "type": "Collection", "totalItems": 0 } }, { "id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823", "type": "Note", "summary": "Recently I was taught the following two expressions formula,", "inReplyTo": null, "published": "2019-05-19T08:36:48Z", "url": "https://mathstodon.xyz/@unknown/102121800221032823", "attributedTo": "https://mathstodon.xyz/users/unknown", "to": [ "https://mathstodon.xyz/users/unknown/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": true, "atomUri": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2019-05-19:objectId=4682364:objectType=Conversation", "content": "<p>From <a href=\"https://youtu.be/dO40DZk-qNU\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">youtu.be/dO40DZk-qNU</span><span class=\"invisible\"></span></a> , I found <a href=\"https://www.wolframalpha.com/input/?i=(1%2Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">wolframalpha.com/input/?i=(1%2</span><span class=\"invisible\">Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5</span></a> , Still I can&#39;t prove this proof yet.<br />It does not matter at all, <br /><a href=\"https://mathstodon.xyz/tags/ENWP\" class=\"mention hashtag\" rel=\"tag\">#<span>ENWP</span></a> &quot;Tangential quadrilateral&quot; <a href=\"https://en.wikipedia.org/wiki/Tangential_quadrilateral\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Tangenti</span><span class=\"invisible\">al_quadrilateral</span></a> has an inscribed circle if only three sides (The fourth side must be \\(a+b-c\\) .) are decided (The shape is completely determined by the determination of another angle).<br />Thanks from <a href=\"https://twitter.com/takatasennsei\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">twitter.com/takatasennsei</span><span class=\"invisible\"></span></a> !</p>", "contentMap": { "en": "<p>From <a href=\"https://youtu.be/dO40DZk-qNU\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">youtu.be/dO40DZk-qNU</span><span class=\"invisible\"></span></a> , I found <a href=\"https://www.wolframalpha.com/input/?i=(1%2Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">wolframalpha.com/input/?i=(1%2</span><span class=\"invisible\">Fx-5%2F(x%2Ba)%2B10%2F(x%2B2a)-10%2F(x%2B3a)%2B5%2F(x%2B4a)-1%2F(x%2B5a))*x*(x%2Ba)*(x%2B2a)*(x%2B3a)*(x%2B4a)*(x%2B5a)%3D(5!)+*+a%5E5</span></a> , Still I can&#39;t prove this proof yet.<br />It does not matter at all, <br /><a href=\"https://mathstodon.xyz/tags/ENWP\" class=\"mention hashtag\" rel=\"tag\">#<span>ENWP</span></a> &quot;Tangential quadrilateral&quot; <a href=\"https://en.wikipedia.org/wiki/Tangential_quadrilateral\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Tangenti</span><span class=\"invisible\">al_quadrilateral</span></a> has an inscribed circle if only three sides (The fourth side must be \\(a+b-c\\) .) are decided (The shape is completely determined by the determination of another angle).<br />Thanks from <a href=\"https://twitter.com/takatasennsei\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">twitter.com/takatasennsei</span><span class=\"invisible\"></span></a> !</p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/000/971/264/original/7323fffa01e745ff.png", "name": null, "blurhash": null, "focalPoint": [ 0.03, 0.45 ], "width": 361, "height": 201 }, { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/000/971/274/original/c4ed173b4c5c7ab7.png", "name": null, "blurhash": null, "width": 640, "height": 785 } ], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/enwp", "name": "#enwp" } ], "replies": { "id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/replies?min_id=102121931617787208&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/replies", "items": [ "https://mathstodon.xyz/users/unknown/statuses/102121931617787208" ] } }, "likes": { "id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mathstodon.xyz/users/unknown/statuses/102121800221032823/shares", "type": "Collection", "totalItems": 0 } }, { "id": "https://mathstodon.xyz/users/unknown/statuses/101935846231748226", "type": "Note", "summary": null, "inReplyTo": null, "published": "2019-04-16T12:26:15Z", "url": "https://mathstodon.xyz/@unknown/101935846231748226", "attributedTo": "https://mathstodon.xyz/users/unknown", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/unknown/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/unknown/statuses/101935846231748226", "inReplyToAtomUri": null, "conversation": "tag:knzk.me,2019-04-15:objectId=55040257:objectType=Conversation", "content": "<p>Now I make PDF <a href=\"https://shinshu.us/itou.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">shinshu.us/itou.pdf</span><span class=\"invisible\"></span></a> , Thanks! We will plan to generalize Twitter &quot;じゃがりきんapu長ピーポ黄金角形&quot; <a href=\"https://twitter.com/wasanp_/status/1097612948007088128\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/wasanp_/status/109</span><span class=\"invisible\">7612948007088128</span></a> in the future. <a href=\"https://mathstodon.xyz/tags/%E4%BA%88%E5%AE%9A%E6%9C%AA%E5%AE%9A\" class=\"mention hashtag\" rel=\"tag\">#<span>予定未定</span></a></p>", "contentMap": { "en": "<p>Now I make PDF <a href=\"https://shinshu.us/itou.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">shinshu.us/itou.pdf</span><span class=\"invisible\"></span></a> , Thanks! We will plan to generalize Twitter &quot;じゃがりきんapu長ピーポ黄金角形&quot; <a href=\"https://twitter.com/wasanp_/status/1097612948007088128\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/wasanp_/status/109</span><span class=\"invisible\">7612948007088128</span></a> in the future. <a href=\"https://mathstodon.xyz/tags/%E4%BA%88%E5%AE%9A%E6%9C%AA%E5%AE%9A\" class=\"mention hashtag\" rel=\"tag\">#<span>予定未定</span></a></p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/000/883/111/original/710f747cffd08570.png", "name": null, "blurhash": null, "focalPoint": [ -0.79, 0.5 ], "width": 1076, "height": 1522 } ], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/%E4%BA%88%E5%AE%9A%E6%9C%AA%E5%AE%9A", "name": "#予定未定" } ], "replies": { "id": "https://mathstodon.xyz/users/unknown/statuses/101935846231748226/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/101935846231748226/replies?min_id=102547916833612674&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/101935846231748226/replies", "items": [ "https://mathstodon.xyz/users/unknown/statuses/102547916833612674" ] } }, "likes": { "id": "https://mathstodon.xyz/users/unknown/statuses/101935846231748226/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mathstodon.xyz/users/unknown/statuses/101935846231748226/shares", "type": "Collection", "totalItems": 0 } }, { "id": "https://mathstodon.xyz/users/unknown/statuses/101794766153808245", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/jsiehler/statuses/101472426764291238", "published": "2019-03-22T14:27:44Z", "url": "https://mathstodon.xyz/@unknown/101794766153808245", "attributedTo": "https://mathstodon.xyz/users/unknown", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/unknown/followers", "https://mathstodon.xyz/users/jsiehler" ], "sensitive": true, "atomUri": "https://mathstodon.xyz/users/unknown/statuses/101794766153808245", "inReplyToAtomUri": "https://mathstodon.xyz/users/jsiehler/statuses/101472426764291238", "conversation": "tag:mathstodon.xyz,2019-01-24:objectId=3355802:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@jsiehler\" class=\"u-url mention\">@<span>jsiehler</span></a></span> I&#39;m playing your <a href=\"https://mathstodon.xyz/tags/SlidingBlockPuzzles\" class=\"mention hashtag\" rel=\"tag\">#<span>SlidingBlockPuzzles</span></a> with so exciting! <a href=\"http://homepages.gac.edu/~jsiehler/games/Blocks-App/index.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">homepages.gac.edu/~jsiehler/ga</span><span class=\"invisible\">mes/Blocks-App/index.html</span></a> (If I understand mechanism that one piece moving one time anyway is counted as 1-move, I may be able to reduce MOVES more!)</p>", "contentMap": { "ja": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@jsiehler\" class=\"u-url mention\">@<span>jsiehler</span></a></span> I&#39;m playing your <a href=\"https://mathstodon.xyz/tags/SlidingBlockPuzzles\" class=\"mention hashtag\" rel=\"tag\">#<span>SlidingBlockPuzzles</span></a> with so exciting! <a href=\"http://homepages.gac.edu/~jsiehler/games/Blocks-App/index.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">homepages.gac.edu/~jsiehler/ga</span><span class=\"invisible\">mes/Blocks-App/index.html</span></a> (If I understand mechanism that one piece moving one time anyway is counted as 1-move, I may be able to reduce MOVES more!)</p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/000/817/863/original/916856adfcc04ee5.png", "name": "spoiler warning? Very Hard 4", "blurhash": null, "width": 645, "height": 445 } ], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/jsiehler", "name": "@jsiehler" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/slidingblockpuzzles", "name": "#slidingblockpuzzles" } ], "replies": { "id": "https://mathstodon.xyz/users/unknown/statuses/101794766153808245/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/101794766153808245/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/101794766153808245/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/unknown/statuses/101794766153808245/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/unknown/statuses/101794766153808245/shares", "type": "Collection", "totalItems": 0 } }, { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628", "type": "Note", "summary": "Now, I am interested in the following three.", "inReplyTo": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230", "published": "2019-03-15T22:04:46Z", "url": "https://mathstodon.xyz/@unknown/101756927091150628", "attributedTo": "https://mathstodon.xyz/users/unknown", "to": [ "https://mathstodon.xyz/users/unknown/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": true, "atomUri": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628", "inReplyToAtomUri": "https://mathstodon.xyz/users/unknown/statuses/101738160656251230", "conversation": "tag:mathstodon.xyz,2019-03-12:objectId=3893096:objectType=Conversation", "content": "<p>1: &quot;Sums of three cubes&quot; <a href=\"https://en.wikipedia.org/wiki/Sums_of_three_cubes\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sums_of_</span><span class=\"invisible\">three_cubes</span></a> has generalized parametric representation &quot;A New Method in the Problem of Three Cubes&quot; <a href=\"https://arxiv.org/abs/1802.06776\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1802.06776</span><span class=\"invisible\"></span></a> (cf. ex. Old article in Japanese <a href=\"http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/math0403.htm\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">asahi-net.or.jp/~KC2H-MSM/math</span><span class=\"invisible\">land/math04/math0403.htm</span></a> ).<br />2: DANIEL SCHER &quot;A DOUBLE SPIRAL FROM DAVID HENDERSON&quot; <a href=\"http://www.sineofthetimes.org/a-double-spiral-from-david-henderson/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">sineofthetimes.org/a-double-sp</span><span class=\"invisible\">iral-from-david-henderson/</span></a><br />3: Paul Bourke &quot;Danzer Aperiodic Tiling&quot; <a href=\"http://paulbourke.net/geometry/tilingplane/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">paulbourke.net/geometry/tiling</span><span class=\"invisible\">plane/</span></a> telling by GirihApp@Twitter <a href=\"https://twitter.com/GirihApp/status/1106615831742558208\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/GirihApp/status/11</span><span class=\"invisible\">06615831742558208</span></a> . I do similar one of the attached image</p>", "contentMap": { "ja": "<p>1: &quot;Sums of three cubes&quot; <a href=\"https://en.wikipedia.org/wiki/Sums_of_three_cubes\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sums_of_</span><span class=\"invisible\">three_cubes</span></a> has generalized parametric representation &quot;A New Method in the Problem of Three Cubes&quot; <a href=\"https://arxiv.org/abs/1802.06776\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1802.06776</span><span class=\"invisible\"></span></a> (cf. ex. Old article in Japanese <a href=\"http://www.asahi-net.or.jp/~KC2H-MSM/mathland/math04/math0403.htm\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">asahi-net.or.jp/~KC2H-MSM/math</span><span class=\"invisible\">land/math04/math0403.htm</span></a> ).<br />2: DANIEL SCHER &quot;A DOUBLE SPIRAL FROM DAVID HENDERSON&quot; <a href=\"http://www.sineofthetimes.org/a-double-spiral-from-david-henderson/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://www.</span><span class=\"ellipsis\">sineofthetimes.org/a-double-sp</span><span class=\"invisible\">iral-from-david-henderson/</span></a><br />3: Paul Bourke &quot;Danzer Aperiodic Tiling&quot; <a href=\"http://paulbourke.net/geometry/tilingplane/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">http://</span><span class=\"ellipsis\">paulbourke.net/geometry/tiling</span><span class=\"invisible\">plane/</span></a> telling by GirihApp@Twitter <a href=\"https://twitter.com/GirihApp/status/1106615831742558208\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">twitter.com/GirihApp/status/11</span><span class=\"invisible\">06615831742558208</span></a> . I do similar one of the attached image</p>" }, "attachment": [ { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/279/original/139c5f33f5b2acdd.jpg", "name": null, "blurhash": null, "width": 1111, "height": 1003 }, { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/280/original/c855df754141691e.jpg", "name": null, "blurhash": null, "width": 975, "height": 500 }, { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/281/original/52731338bd90ef34.jpg", "name": null, "blurhash": null, "width": 900, "height": 900 }, { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/000/801/282/original/2725347876db0be9.jpg", "name": null, "blurhash": null, "width": 1200, "height": 581 } ], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/unknown/statuses/101756927091150628/shares", "type": "Collection", "totalItems": 0 } } ] }