ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies", "type": "Collection", "first": { "id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies?page=true", "type": "CollectionPage", "next": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies", "items": [ { "id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/tao/statuses/109452134240268957", "published": "2022-12-03T22:55:14Z", "url": "https://mathstodon.xyz/@tao/109452205408644988", "attributedTo": "https://mathstodon.xyz/users/tao", "to": [ "https://mathstodon.xyz/users/tao/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/tao/statuses/109452205408644988", "inReplyToAtomUri": "https://mathstodon.xyz/users/tao/statuses/109452134240268957", "conversation": "tag:mathstodon.xyz,2022-12-03:objectId=32025619:objectType=Conversation", "content": "<p>* Preserved by &quot;disjoint union&quot; -&gt; suffices to check &quot;connected&quot; spaces, &quot;spanning&quot; sets, &quot;cycle&quot; permutations, or &quot;ergodic&quot; systems</p><p>* Preserved by &quot;asymptotically separated superposition&quot; and by &quot;dispersed perturbations&quot; -&gt; suffices to check &quot;almost periodic/compact modulo symmetry&quot; objects. [This is the philosophy behind the concentration-compactness approach to PDE, especially its more modern applications in critical dispersive PDE that are based on profile decompositions.]</p><p>(11/)</p>", "contentMap": { "en": "<p>* Preserved by &quot;disjoint union&quot; -&gt; suffices to check &quot;connected&quot; spaces, &quot;spanning&quot; sets, &quot;cycle&quot; permutations, or &quot;ergodic&quot; systems</p><p>* Preserved by &quot;asymptotically separated superposition&quot; and by &quot;dispersed perturbations&quot; -&gt; suffices to check &quot;almost periodic/compact modulo symmetry&quot; objects. [This is the philosophy behind the concentration-compactness approach to PDE, especially its more modern applications in critical dispersive PDE that are based on profile decompositions.]</p><p>(11/)</p>" }, "updated": "2022-12-03T23:03:34Z", "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/likes", "type": "Collection", "totalItems": 16 }, "shares": { "id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/shares", "type": "Collection", "totalItems": 7 } } ] } }