A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies",
"type": "Collection",
"first": {
"id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies?page=true",
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies",
"items": [
{
"id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/tao/statuses/109452134240268957",
"published": "2022-12-03T22:55:14Z",
"url": "https://mathstodon.xyz/@tao/109452205408644988",
"attributedTo": "https://mathstodon.xyz/users/tao",
"to": [
"https://mathstodon.xyz/users/tao/followers"
],
"cc": [
"https://www.w3.org/ns/activitystreams#Public"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/tao/statuses/109452205408644988",
"inReplyToAtomUri": "https://mathstodon.xyz/users/tao/statuses/109452134240268957",
"conversation": "tag:mathstodon.xyz,2022-12-03:objectId=32025619:objectType=Conversation",
"content": "<p>* Preserved by "disjoint union" -> suffices to check "connected" spaces, "spanning" sets, "cycle" permutations, or "ergodic" systems</p><p>* Preserved by "asymptotically separated superposition" and by "dispersed perturbations" -> suffices to check "almost periodic/compact modulo symmetry" objects. [This is the philosophy behind the concentration-compactness approach to PDE, especially its more modern applications in critical dispersive PDE that are based on profile decompositions.]</p><p>(11/)</p>",
"contentMap": {
"en": "<p>* Preserved by "disjoint union" -> suffices to check "connected" spaces, "spanning" sets, "cycle" permutations, or "ergodic" systems</p><p>* Preserved by "asymptotically separated superposition" and by "dispersed perturbations" -> suffices to check "almost periodic/compact modulo symmetry" objects. [This is the philosophy behind the concentration-compactness approach to PDE, especially its more modern applications in critical dispersive PDE that are based on profile decompositions.]</p><p>(11/)</p>"
},
"updated": "2022-12-03T23:03:34Z",
"attachment": [],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/likes",
"type": "Collection",
"totalItems": 16
},
"shares": {
"id": "https://mathstodon.xyz/users/tao/statuses/109452205408644988/shares",
"type": "Collection",
"totalItems": 7
}
}
]
}
}