ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062", "type": "Note", "summary": null, "inReplyTo": null, "published": "2022-12-03T20:30:06Z", "url": "https://mathstodon.xyz/@tao/109451634735720062", "attributedTo": "https://mathstodon.xyz/users/tao", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/tao/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/tao/statuses/109451634735720062", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2022-12-03:objectId=32025619:objectType=Conversation", "content": "<p>Perhaps Mathstodon can be a place to note some folklore <a href=\"https://mathstodon.xyz/tags/MathTricks\" class=\"mention hashtag\" rel=\"tag\">#<span>MathTricks</span></a> that are useful but too trifling to devote an entire paper to. Here&#39;s one (that I recalled on browsing MathOverflow <a href=\"https://mathoverflow.net/questions/435728\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">mathoverflow.net/questions/435</span><span class=\"invisible\">728</span></a>): If one is trying to prove a Hilbert space identity or inequality which is invariant under a unitary group action, one can often reduce &quot;for free&quot; to the irreducible components of that group action. (1/2)</p>", "contentMap": { "en": "<p>Perhaps Mathstodon can be a place to note some folklore <a href=\"https://mathstodon.xyz/tags/MathTricks\" class=\"mention hashtag\" rel=\"tag\">#<span>MathTricks</span></a> that are useful but too trifling to devote an entire paper to. Here&#39;s one (that I recalled on browsing MathOverflow <a href=\"https://mathoverflow.net/questions/435728\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">mathoverflow.net/questions/435</span><span class=\"invisible\">728</span></a>): If one is trying to prove a Hilbert space identity or inequality which is invariant under a unitary group action, one can often reduce &quot;for free&quot; to the irreducible components of that group action. (1/2)</p>" }, "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/mathtricks", "name": "#mathtricks" } ], "replies": { "id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/replies?min_id=109451643811911706&page=true", "partOf": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/replies", "items": [ "https://mathstodon.xyz/users/tao/statuses/109451643811911706" ] } }, "likes": { "id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/likes", "type": "Collection", "totalItems": 168 }, "shares": { "id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/shares", "type": "Collection", "totalItems": 76 } }