A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2022-12-03T20:30:06Z",
"url": "https://mathstodon.xyz/@tao/109451634735720062",
"attributedTo": "https://mathstodon.xyz/users/tao",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/tao/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/tao/statuses/109451634735720062",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2022-12-03:objectId=32025619:objectType=Conversation",
"content": "<p>Perhaps Mathstodon can be a place to note some folklore <a href=\"https://mathstodon.xyz/tags/MathTricks\" class=\"mention hashtag\" rel=\"tag\">#<span>MathTricks</span></a> that are useful but too trifling to devote an entire paper to. Here's one (that I recalled on browsing MathOverflow <a href=\"https://mathoverflow.net/questions/435728\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">mathoverflow.net/questions/435</span><span class=\"invisible\">728</span></a>): If one is trying to prove a Hilbert space identity or inequality which is invariant under a unitary group action, one can often reduce "for free" to the irreducible components of that group action. (1/2)</p>",
"contentMap": {
"en": "<p>Perhaps Mathstodon can be a place to note some folklore <a href=\"https://mathstodon.xyz/tags/MathTricks\" class=\"mention hashtag\" rel=\"tag\">#<span>MathTricks</span></a> that are useful but too trifling to devote an entire paper to. Here's one (that I recalled on browsing MathOverflow <a href=\"https://mathoverflow.net/questions/435728\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">mathoverflow.net/questions/435</span><span class=\"invisible\">728</span></a>): If one is trying to prove a Hilbert space identity or inequality which is invariant under a unitary group action, one can often reduce "for free" to the irreducible components of that group action. (1/2)</p>"
},
"attachment": [],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/mathtricks",
"name": "#mathtricks"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/replies?min_id=109451643811911706&page=true",
"partOf": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/replies",
"items": [
"https://mathstodon.xyz/users/tao/statuses/109451643811911706"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/likes",
"type": "Collection",
"totalItems": 168
},
"shares": {
"id": "https://mathstodon.xyz/users/tao/statuses/109451634735720062/shares",
"type": "Collection",
"totalItems": 76
}
}