ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/rrogers/statuses/110254780943955431", "type": "Note", "summary": null, "inReplyTo": null, "published": "2023-04-24T16:40:45Z", "url": "https://mathstodon.xyz/@rrogers/110254780943955431", "attributedTo": "https://mathstodon.xyz/users/rrogers", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/rrogers/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/rrogers/statuses/110254780943955431", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2023-04-24:objectId=48371344:objectType=Conversation", "content": "<p>A problem mentioned elsewhere; what is the largest similar triangle that can be embedded into a triangle?<br /> i.e 3:4:5.<br />For any triangle, we can determine a lower bound (in fact I think it is sharp).<br />Take \\(x,y,z\\) as the vertices and \\(X,Y,Z\\) as the opposite sides and<br />\\( x_{\\theta},y_{\\theta},z_{\\theta}\\) as the corresponding angles.<br />Example area of the triangle: \\( A_{z}=\\frac{1}{2}\\cdot X\\cdot Y\\cdot\\sin\\left(z_{\\theta}\\right)\\)<br />But \\( A=A_{z}=A_{y}=A_{x}\\)<br />The same for any other vertice order.<br />Join the midpoints of the sides to form vertices \\( x&#39;, y&#39;, z&#39;\\) lying on the sides \\( X, Y, Z\\ )\\) <br />And \\(𝑋&#39;,𝑌&#39;,𝑍&#39; \\) the opposite sides of the new triangle.<br />Trim the “outside” triangles; remembering that one only needs to specify 3 parameters to determine the triangle and “similarity” is just a scaling of terms \\(X, Y, Z\\).<br />Taking the example, we have<br />\\(A_{z}&#39;=\\frac{1}{2}\\frac{X}{2}\\cdot\\frac{Y}{2}\\cdot\\sin\\left(z_{\\theta}\\right)=\\frac{1}{4}\\cdot\\left(\\frac{1}{2}\\cdot X\\cdot Y\\cdot\\sin\\left(z_{\\theta}\\right)\\right) \\) <br />and the same for the other three vertices since the angles haven&#39;t changed.<br />Similarly for \\(x_{\\theta},y_{\\theta}\\)<br />So the area of the inside triangle is: <br />\\(A-A&#39;_{z}-A&#39;_{x}-A&#39;_{y}=\\frac{1}{4}A \\) <br />So we have that \\(\\frac{1}{4}\\) works but is it maximum? <br />I am going to read<br />Perpendicular Polygons<br /><a href=\"https://www.jstor.org/stable/2322190\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"\">jstor.org/stable/2322190</span><span class=\"invisible\"></span></a><br />Which looks to be a paywall, but is available for reading (after numerous clicks). <br />Courtesy of our ongoing squabbles about “Intellectual Property” (as if it was a rock in my yard) <br />In any case, this starts out as sort of, Freshman Complex Analytic Geometry and rapidly gets into material that requires thinking</p>", "contentMap": { "en": "<p>A problem mentioned elsewhere; what is the largest similar triangle that can be embedded into a triangle?<br /> i.e 3:4:5.<br />For any triangle, we can determine a lower bound (in fact I think it is sharp).<br />Take \\(x,y,z\\) as the vertices and \\(X,Y,Z\\) as the opposite sides and<br />\\( x_{\\theta},y_{\\theta},z_{\\theta}\\) as the corresponding angles.<br />Example area of the triangle: \\( A_{z}=\\frac{1}{2}\\cdot X\\cdot Y\\cdot\\sin\\left(z_{\\theta}\\right)\\)<br />But \\( A=A_{z}=A_{y}=A_{x}\\)<br />The same for any other vertice order.<br />Join the midpoints of the sides to form vertices \\( x&#39;, y&#39;, z&#39;\\) lying on the sides \\( X, Y, Z\\ )\\) <br />And \\(𝑋&#39;,𝑌&#39;,𝑍&#39; \\) the opposite sides of the new triangle.<br />Trim the “outside” triangles; remembering that one only needs to specify 3 parameters to determine the triangle and “similarity” is just a scaling of terms \\(X, Y, Z\\).<br />Taking the example, we have<br />\\(A_{z}&#39;=\\frac{1}{2}\\frac{X}{2}\\cdot\\frac{Y}{2}\\cdot\\sin\\left(z_{\\theta}\\right)=\\frac{1}{4}\\cdot\\left(\\frac{1}{2}\\cdot X\\cdot Y\\cdot\\sin\\left(z_{\\theta}\\right)\\right) \\) <br />and the same for the other three vertices since the angles haven&#39;t changed.<br />Similarly for \\(x_{\\theta},y_{\\theta}\\)<br />So the area of the inside triangle is: <br />\\(A-A&#39;_{z}-A&#39;_{x}-A&#39;_{y}=\\frac{1}{4}A \\) <br />So we have that \\(\\frac{1}{4}\\) works but is it maximum? <br />I am going to read<br />Perpendicular Polygons<br /><a href=\"https://www.jstor.org/stable/2322190\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"\">jstor.org/stable/2322190</span><span class=\"invisible\"></span></a><br />Which looks to be a paywall, but is available for reading (after numerous clicks). <br />Courtesy of our ongoing squabbles about “Intellectual Property” (as if it was a rock in my yard) <br />In any case, this starts out as sort of, Freshman Complex Analytic Geometry and rapidly gets into material that requires thinking</p>" }, "updated": "2023-04-24T16:44:18Z", "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/rrogers/statuses/110254780943955431/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/rrogers/statuses/110254780943955431/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/rrogers/statuses/110254780943955431/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/rrogers/statuses/110254780943955431/likes", "type": "Collection", "totalItems": 5 }, "shares": { "id": "https://mathstodon.xyz/users/rrogers/statuses/110254780943955431/shares", "type": "Collection", "totalItems": 0 } }