A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/rrogers/statuses/109540951536303540",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2022-12-19T15:04:33Z",
"url": "https://mathstodon.xyz/@rrogers/109540951536303540",
"attributedTo": "https://mathstodon.xyz/users/rrogers",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/rrogers/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/rrogers/statuses/109540951536303540",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2022-12-19:objectId=34173998:objectType=Conversation",
"content": "<p>Introduction to an exposition on some work I have done over the last decade. Since I believe that "motivation" in mathematics is the best motivator 😀 . Explanations, Theorems, etc ... will follow; slowly I am reviewing the documentation (for the 11th time) again.<br />1) In the realm of polynomial generating functions, EGF's (Sheffer sequences <a href=\"https://en.wikipedia.org/wiki/Sheffer_sequence\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sheffer_</span><span class=\"invisible\">sequence</span></a>), OGF's, and similar sequences are all "similar" when expressed as polynomial coefficient arrays/matrices.<br /><a href=\"https://mathstodon.xyz/tags/EGF_OGF\" class=\"mention hashtag\" rel=\"tag\">#<span>EGF_OGF</span></a><br />1/n</p>",
"contentMap": {
"en": "<p>Introduction to an exposition on some work I have done over the last decade. Since I believe that "motivation" in mathematics is the best motivator 😀 . Explanations, Theorems, etc ... will follow; slowly I am reviewing the documentation (for the 11th time) again.<br />1) In the realm of polynomial generating functions, EGF's (Sheffer sequences <a href=\"https://en.wikipedia.org/wiki/Sheffer_sequence\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Sheffer_</span><span class=\"invisible\">sequence</span></a>), OGF's, and similar sequences are all "similar" when expressed as polynomial coefficient arrays/matrices.<br /><a href=\"https://mathstodon.xyz/tags/EGF_OGF\" class=\"mention hashtag\" rel=\"tag\">#<span>EGF_OGF</span></a><br />1/n</p>"
},
"updated": "2022-12-28T14:52:04Z",
"attachment": [],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/egf_ogf",
"name": "#egf_ogf"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/rrogers/statuses/109540951536303540/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/rrogers/statuses/109540951536303540/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/rrogers/statuses/109540951536303540/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/rrogers/statuses/109540951536303540/likes",
"type": "Collection",
"totalItems": 0
},
"shares": {
"id": "https://mathstodon.xyz/users/rrogers/statuses/109540951536303540/shares",
"type": "Collection",
"totalItems": 1
}
}