A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/pvk/statuses/109519752120949962",
"published": "2022-12-15T21:16:44Z",
"url": "https://mathstodon.xyz/@pvk/109519765812226008",
"attributedTo": "https://mathstodon.xyz/users/pvk",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/pvk/followers",
"https://mathstodon.xyz/users/JordiGH"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008",
"inReplyToAtomUri": "https://mathstodon.xyz/users/pvk/statuses/109519752120949962",
"conversation": "tag:mathstodon.xyz,2022-12-15:objectId=33492859:objectType=Conversation",
"content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@JordiGH\" class=\"u-url mention\">@<span>JordiGH</span></a></span> What's cool about this is that a lot of natural structures/properties of infinity-categories can be encoded (at least for presentable ones) as modules over something in Pr^L. For example, a stable presentable infinity-category is a module over Spectra, and the stabilization of \\(\\mathcal{C}\\) is \\(\\mathsf{Spectra} \\otimes \\mathcal{C}\\).</p>",
"contentMap": {
"en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@JordiGH\" class=\"u-url mention\">@<span>JordiGH</span></a></span> What's cool about this is that a lot of natural structures/properties of infinity-categories can be encoded (at least for presentable ones) as modules over something in Pr^L. For example, a stable presentable infinity-category is a module over Spectra, and the stabilization of \\(\\mathcal{C}\\) is \\(\\mathsf{Spectra} \\otimes \\mathcal{C}\\).</p>"
},
"attachment": [],
"tag": [
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/JordiGH",
"name": "@JordiGH"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/replies?min_id=109519767782688239&page=true",
"partOf": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/replies",
"items": [
"https://mathstodon.xyz/users/pvk/statuses/109519767782688239"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/likes",
"type": "Collection",
"totalItems": 0
},
"shares": {
"id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/shares",
"type": "Collection",
"totalItems": 0
}
}