ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/pustam_egr/statuses/113248911454610447", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-10-04T11:27:31Z", "url": "https://mathstodon.xyz/@pustam_egr/113248911454610447", "attributedTo": "https://mathstodon.xyz/users/pustam_egr", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/pustam_egr/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/pustam_egr/statuses/113248911454610447", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2024-10-04:objectId=117312937:objectType=Conversation", "content": "<p>Let \\(\\varpi=\\dfrac{\\Gamma^2\\left(\\frac14\\right)}{2\\sqrt{2\\pi}}=2.62205755\\ldots\\) be the lemniscate constant. Then,<br />\\[\\Large\\displaystyle\\sum_{n=1}^\\infty\\dfrac{1}{\\sinh^4(\\pi n)}=\\dfrac{\\varpi^4}{30\\pi^4}+\\dfrac{1}{3\\pi}-\\dfrac{11}{90}\\]</p><p><a href=\"https://mathstodon.xyz/tags/Series\" class=\"mention hashtag\" rel=\"tag\">#<span>Series</span></a> <a href=\"https://mathstodon.xyz/tags/Sum\" class=\"mention hashtag\" rel=\"tag\">#<span>Sum</span></a> <a href=\"https://mathstodon.xyz/tags/InfiniteSum\" class=\"mention hashtag\" rel=\"tag\">#<span>InfiniteSum</span></a> <a href=\"https://mathstodon.xyz/tags/LemniscateConstant\" class=\"mention hashtag\" rel=\"tag\">#<span>LemniscateConstant</span></a> <a href=\"https://mathstodon.xyz/tags/GammaFunction\" class=\"mention hashtag\" rel=\"tag\">#<span>GammaFunction</span></a> <a href=\"https://mathstodon.xyz/tags/Lemniscate\" class=\"mention hashtag\" rel=\"tag\">#<span>Lemniscate</span></a> <a href=\"https://mathstodon.xyz/tags/LemniscateOfBernoulli\" class=\"mention hashtag\" rel=\"tag\">#<span>LemniscateOfBernoulli</span></a> <a href=\"https://mathstodon.xyz/tags/Bernoulli\" class=\"mention hashtag\" rel=\"tag\">#<span>Bernoulli</span></a> <a href=\"https://mathstodon.xyz/tags/Math\" class=\"mention hashtag\" rel=\"tag\">#<span>Math</span></a> <a href=\"https://mathstodon.xyz/tags/Maths\" class=\"mention hashtag\" rel=\"tag\">#<span>Maths</span></a> <a href=\"https://mathstodon.xyz/tags/InfiniteSeries\" class=\"mention hashtag\" rel=\"tag\">#<span>InfiniteSeries</span></a> <a href=\"https://mathstodon.xyz/tags/HyperbolicSines\" class=\"mention hashtag\" rel=\"tag\">#<span>HyperbolicSines</span></a></p>", "contentMap": { "en": "<p>Let \\(\\varpi=\\dfrac{\\Gamma^2\\left(\\frac14\\right)}{2\\sqrt{2\\pi}}=2.62205755\\ldots\\) be the lemniscate constant. Then,<br />\\[\\Large\\displaystyle\\sum_{n=1}^\\infty\\dfrac{1}{\\sinh^4(\\pi n)}=\\dfrac{\\varpi^4}{30\\pi^4}+\\dfrac{1}{3\\pi}-\\dfrac{11}{90}\\]</p><p><a href=\"https://mathstodon.xyz/tags/Series\" class=\"mention hashtag\" rel=\"tag\">#<span>Series</span></a> <a href=\"https://mathstodon.xyz/tags/Sum\" class=\"mention hashtag\" rel=\"tag\">#<span>Sum</span></a> <a href=\"https://mathstodon.xyz/tags/InfiniteSum\" class=\"mention hashtag\" rel=\"tag\">#<span>InfiniteSum</span></a> <a href=\"https://mathstodon.xyz/tags/LemniscateConstant\" class=\"mention hashtag\" rel=\"tag\">#<span>LemniscateConstant</span></a> <a href=\"https://mathstodon.xyz/tags/GammaFunction\" class=\"mention hashtag\" rel=\"tag\">#<span>GammaFunction</span></a> <a href=\"https://mathstodon.xyz/tags/Lemniscate\" class=\"mention hashtag\" rel=\"tag\">#<span>Lemniscate</span></a> <a href=\"https://mathstodon.xyz/tags/LemniscateOfBernoulli\" class=\"mention hashtag\" rel=\"tag\">#<span>LemniscateOfBernoulli</span></a> <a href=\"https://mathstodon.xyz/tags/Bernoulli\" class=\"mention hashtag\" rel=\"tag\">#<span>Bernoulli</span></a> <a href=\"https://mathstodon.xyz/tags/Math\" class=\"mention hashtag\" rel=\"tag\">#<span>Math</span></a> <a href=\"https://mathstodon.xyz/tags/Maths\" class=\"mention hashtag\" rel=\"tag\">#<span>Maths</span></a> <a href=\"https://mathstodon.xyz/tags/InfiniteSeries\" class=\"mention hashtag\" rel=\"tag\">#<span>InfiniteSeries</span></a> <a href=\"https://mathstodon.xyz/tags/HyperbolicSines\" class=\"mention hashtag\" rel=\"tag\">#<span>HyperbolicSines</span></a></p>" }, "updated": "2024-10-04T11:30:44Z", "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/hyperbolicsines", "name": "#hyperbolicsines" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/infiniteseries", "name": "#infiniteseries" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/maths", "name": "#maths" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/math", "name": "#math" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/Bernoulli", "name": "#Bernoulli" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/lemniscateofbernoulli", "name": "#lemniscateofbernoulli" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/lemniscate", "name": "#lemniscate" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/gammafunction", "name": "#gammafunction" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/lemniscateconstant", "name": "#lemniscateconstant" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/infinitesum", "name": "#infinitesum" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/SuM", "name": "#SuM" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/series", "name": "#series" } ], "replies": { "id": "https://mathstodon.xyz/users/pustam_egr/statuses/113248911454610447/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/pustam_egr/statuses/113248911454610447/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/pustam_egr/statuses/113248911454610447/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/pustam_egr/statuses/113248911454610447/likes", "type": "Collection", "totalItems": 2 }, "shares": { "id": "https://mathstodon.xyz/users/pustam_egr/statuses/113248911454610447/shares", "type": "Collection", "totalItems": 0 } }