A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2025-05-07T10:00:41Z",
"url": "https://mathstodon.xyz/@paysmaths/114465966757381888",
"attributedTo": "https://mathstodon.xyz/users/paysmaths",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/paysmaths/followers",
"https://mathstodon.xyz/users/Theoremoftheday"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2025-05-07:objectId=152019319:objectType=Conversation",
"content": "<p>Theorem of the Day (May 7, 2025) : The Max-Flow Min-Cut Theorem<br />Source : Theorem of the Day / Robin Whitty<br />pdf : <a href=\"https://www.theoremoftheday.org/OR/MaxFlowMinCut/TotDMaxFlowMinCut.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/OR/MaxFlow</span><span class=\"invisible\">MinCut/TotDMaxFlowMinCut.pdf</span></a><br />notes : <a href=\"https://www.theoremoftheday.org/Resources/TheoremNotes.htm#168\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/Resources/</span><span class=\"invisible\">TheoremNotes.htm#168</span></a></p><p><a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/maths\" class=\"mention hashtag\" rel=\"tag\">#<span>maths</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/theorem\" class=\"mention hashtag\" rel=\"tag\">#<span>theorem</span></a> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@Theoremoftheday\" class=\"u-url mention\">@<span>Theoremoftheday</span></a></span></p>",
"contentMap": {
"fr": "<p>Theorem of the Day (May 7, 2025) : The Max-Flow Min-Cut Theorem<br />Source : Theorem of the Day / Robin Whitty<br />pdf : <a href=\"https://www.theoremoftheday.org/OR/MaxFlowMinCut/TotDMaxFlowMinCut.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/OR/MaxFlow</span><span class=\"invisible\">MinCut/TotDMaxFlowMinCut.pdf</span></a><br />notes : <a href=\"https://www.theoremoftheday.org/Resources/TheoremNotes.htm#168\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/Resources/</span><span class=\"invisible\">TheoremNotes.htm#168</span></a></p><p><a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/maths\" class=\"mention hashtag\" rel=\"tag\">#<span>maths</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/theorem\" class=\"mention hashtag\" rel=\"tag\">#<span>theorem</span></a> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@Theoremoftheday\" class=\"u-url mention\">@<span>Theoremoftheday</span></a></span></p>"
},
"attachment": [
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mathstodon.xyz/media_attachments/files/114/465/966/653/908/284/original/d4f46fa6e3c0ac93.png",
"name": "Comprehensive presentation of the \"Theorem of the Day\", starting with a statement of this theorem.\r\nThe Max-Flow Min-Cut Theorem : Let N = (V, E, s, t) be an st-network with vertex set V and edge set E, and with distinguished vertices s and t. Then for any capacity function c : E → R≥0 on the edges of N, the maximum value of an st-flow is equal to the minimum value of an st-cut.",
"blurhash": "UERyj1xQtWx-X1k8t8ozntN3ngWHNgkEsmV[",
"width": 1170,
"height": 827
}
],
"tag": [
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/Theoremoftheday",
"name": "@Theoremoftheday"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/theorem",
"name": "#theorem"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/math",
"name": "#math"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/maths",
"name": "#maths"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/mathematics",
"name": "#mathematics"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/likes",
"type": "Collection",
"totalItems": 1
},
"shares": {
"id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/shares",
"type": "Collection",
"totalItems": 2
}
}