ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888", "type": "Note", "summary": null, "inReplyTo": null, "published": "2025-05-07T10:00:41Z", "url": "https://mathstodon.xyz/@paysmaths/114465966757381888", "attributedTo": "https://mathstodon.xyz/users/paysmaths", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/paysmaths/followers", "https://mathstodon.xyz/users/Theoremoftheday" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2025-05-07:objectId=152019319:objectType=Conversation", "content": "<p>Theorem of the Day (May 7, 2025) : The Max-Flow Min-Cut Theorem<br />Source : Theorem of the Day / Robin Whitty<br />pdf : <a href=\"https://www.theoremoftheday.org/OR/MaxFlowMinCut/TotDMaxFlowMinCut.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/OR/MaxFlow</span><span class=\"invisible\">MinCut/TotDMaxFlowMinCut.pdf</span></a><br />notes : <a href=\"https://www.theoremoftheday.org/Resources/TheoremNotes.htm#168\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/Resources/</span><span class=\"invisible\">TheoremNotes.htm#168</span></a></p><p><a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/maths\" class=\"mention hashtag\" rel=\"tag\">#<span>maths</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/theorem\" class=\"mention hashtag\" rel=\"tag\">#<span>theorem</span></a> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@Theoremoftheday\" class=\"u-url mention\">@<span>Theoremoftheday</span></a></span></p>", "contentMap": { "fr": "<p>Theorem of the Day (May 7, 2025) : The Max-Flow Min-Cut Theorem<br />Source : Theorem of the Day / Robin Whitty<br />pdf : <a href=\"https://www.theoremoftheday.org/OR/MaxFlowMinCut/TotDMaxFlowMinCut.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/OR/MaxFlow</span><span class=\"invisible\">MinCut/TotDMaxFlowMinCut.pdf</span></a><br />notes : <a href=\"https://www.theoremoftheday.org/Resources/TheoremNotes.htm#168\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">theoremoftheday.org/Resources/</span><span class=\"invisible\">TheoremNotes.htm#168</span></a></p><p><a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/maths\" class=\"mention hashtag\" rel=\"tag\">#<span>maths</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/theorem\" class=\"mention hashtag\" rel=\"tag\">#<span>theorem</span></a> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@Theoremoftheday\" class=\"u-url mention\">@<span>Theoremoftheday</span></a></span></p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/114/465/966/653/908/284/original/d4f46fa6e3c0ac93.png", "name": "Comprehensive presentation of the \"Theorem of the Day\", starting with a statement of this theorem.\r\nThe Max-Flow Min-Cut Theorem : Let N = (V, E, s, t) be an st-network with vertex set V and edge set E, and with distinguished vertices s and t. Then for any capacity function c : E → R≥0 on the edges of N, the maximum value of an st-flow is equal to the minimum value of an st-cut.", "blurhash": "UERyj1xQtWx-X1k8t8ozntN3ngWHNgkEsmV[", "width": 1170, "height": 827 } ], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/Theoremoftheday", "name": "@Theoremoftheday" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/theorem", "name": "#theorem" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/math", "name": "#math" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/maths", "name": "#maths" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/mathematics", "name": "#mathematics" } ], "replies": { "id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/paysmaths/statuses/114465966757381888/shares", "type": "Collection", "totalItems": 2 } }