A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/paurea/collections/featured",
"type": "OrderedCollection",
"totalItems": 1,
"orderedItems": [
{
"id": "https://mathstodon.xyz/users/paurea/statuses/111926221770786120",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-02-13T21:10:08Z",
"url": "https://mathstodon.xyz/@paurea/111926221770786120",
"attributedTo": "https://mathstodon.xyz/users/paurea",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/paurea/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/paurea/statuses/111926221770786120",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2024-02-13:objectId=84925213:objectType=Conversation",
"content": "<p>If multiplication is \\(ab = a\\uparrow_1 b = \\underbrace{a+a\\cdots a}_\\text{b times} \\) and exponentiation is \\(a^b = a\\uparrow_2 b = \\underbrace{aa\\cdots a}_\\text{b times}\\), what is \\(a\\uparrow_{0.5} b\\)?<br />I gave a talk about how to tackle this problem. You can find the slides at <a href=\"https://paurea.net/gama.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">paurea.net/gama.pdf</span><span class=\"invisible\"></span></a><br /><a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/IntegralTransforms\" class=\"mention hashtag\" rel=\"tag\">#<span>IntegralTransforms</span></a> <a href=\"https://mathstodon.xyz/tags/abeliangroups\" class=\"mention hashtag\" rel=\"tag\">#<span>abeliangroups</span></a></p>",
"contentMap": {
"en": "<p>If multiplication is \\(ab = a\\uparrow_1 b = \\underbrace{a+a\\cdots a}_\\text{b times} \\) and exponentiation is \\(a^b = a\\uparrow_2 b = \\underbrace{aa\\cdots a}_\\text{b times}\\), what is \\(a\\uparrow_{0.5} b\\)?<br />I gave a talk about how to tackle this problem. You can find the slides at <a href=\"https://paurea.net/gama.pdf\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">paurea.net/gama.pdf</span><span class=\"invisible\"></span></a><br /><a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/IntegralTransforms\" class=\"mention hashtag\" rel=\"tag\">#<span>IntegralTransforms</span></a> <a href=\"https://mathstodon.xyz/tags/abeliangroups\" class=\"mention hashtag\" rel=\"tag\">#<span>abeliangroups</span></a></p>"
},
"updated": "2024-02-13T21:10:38Z",
"attachment": [],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/abeliangroups",
"name": "#abeliangroups"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/integraltransforms",
"name": "#integraltransforms"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/math",
"name": "#math"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/paurea/statuses/111926221770786120/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/paurea/statuses/111926221770786120/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/paurea/statuses/111926221770786120/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/paurea/statuses/111926221770786120/likes",
"type": "Collection",
"totalItems": 4
},
"shares": {
"id": "https://mathstodon.xyz/users/paurea/statuses/111926221770786120/shares",
"type": "Collection",
"totalItems": 0
}
}
]
}