A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/matthewconroy/statuses/113660298688666132",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-12-16T03:08:42Z",
"url": "https://mathstodon.xyz/@matthewconroy/113660298688666132",
"attributedTo": "https://mathstodon.xyz/users/matthewconroy",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/matthewconroy/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/matthewconroy/statuses/113660298688666132",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2024-12-16:objectId=128557861:objectType=Conversation",
"content": "<p>I ran across the Wikipedia article on Littlewood polynomials. It has a plot of all the roots of the degree 15 polynomials, that looks very nice. I thought I would create an animation showing the roots for degree 1, degree 2, etc. I also thought maybe I'd add a plot of the roots for something with degree higher than 15. Here is the degree 16 plot (this is reduced to 25% of the original image). It took 2 hours in Sage on my laptop, so I might try 17, even 18 - who knows? I have the thought that I ought to be able to reduce the precision, and this ought to speed things up a lot (since for plotting much lower precision than the default is needed). I don't particularly like blue, though: I'll have to try other colors. <br /><a href=\"https://en.wikipedia.org/wiki/Littlewood_polynomial\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Littlewo</span><span class=\"invisible\">od_polynomial</span></a> </p><p><a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/littlewood\" class=\"mention hashtag\" rel=\"tag\">#<span>littlewood</span></a> <a href=\"https://mathstodon.xyz/tags/littlewoodPolynomials\" class=\"mention hashtag\" rel=\"tag\">#<span>littlewoodPolynomials</span></a> <a href=\"https://mathstodon.xyz/tags/polynomials\" class=\"mention hashtag\" rel=\"tag\">#<span>polynomials</span></a> <a href=\"https://mathstodon.xyz/tags/plotting\" class=\"mention hashtag\" rel=\"tag\">#<span>plotting</span></a> <a href=\"https://mathstodon.xyz/tags/sagemath\" class=\"mention hashtag\" rel=\"tag\">#<span>sagemath</span></a> <a href=\"https://mathstodon.xyz/tags/graphics\" class=\"mention hashtag\" rel=\"tag\">#<span>graphics</span></a> <a href=\"https://mathstodon.xyz/tags/illustration\" class=\"mention hashtag\" rel=\"tag\">#<span>illustration</span></a></p>",
"contentMap": {
"en": "<p>I ran across the Wikipedia article on Littlewood polynomials. It has a plot of all the roots of the degree 15 polynomials, that looks very nice. I thought I would create an animation showing the roots for degree 1, degree 2, etc. I also thought maybe I'd add a plot of the roots for something with degree higher than 15. Here is the degree 16 plot (this is reduced to 25% of the original image). It took 2 hours in Sage on my laptop, so I might try 17, even 18 - who knows? I have the thought that I ought to be able to reduce the precision, and this ought to speed things up a lot (since for plotting much lower precision than the default is needed). I don't particularly like blue, though: I'll have to try other colors. <br /><a href=\"https://en.wikipedia.org/wiki/Littlewood_polynomial\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Littlewo</span><span class=\"invisible\">od_polynomial</span></a> </p><p><a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/littlewood\" class=\"mention hashtag\" rel=\"tag\">#<span>littlewood</span></a> <a href=\"https://mathstodon.xyz/tags/littlewoodPolynomials\" class=\"mention hashtag\" rel=\"tag\">#<span>littlewoodPolynomials</span></a> <a href=\"https://mathstodon.xyz/tags/polynomials\" class=\"mention hashtag\" rel=\"tag\">#<span>polynomials</span></a> <a href=\"https://mathstodon.xyz/tags/plotting\" class=\"mention hashtag\" rel=\"tag\">#<span>plotting</span></a> <a href=\"https://mathstodon.xyz/tags/sagemath\" class=\"mention hashtag\" rel=\"tag\">#<span>sagemath</span></a> <a href=\"https://mathstodon.xyz/tags/graphics\" class=\"mention hashtag\" rel=\"tag\">#<span>graphics</span></a> <a href=\"https://mathstodon.xyz/tags/illustration\" class=\"mention hashtag\" rel=\"tag\">#<span>illustration</span></a></p>"
},
"updated": "2024-12-16T05:39:19Z",
"attachment": [
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mathstodon.xyz/media_attachments/files/113/660/291/451/171/133/original/cfadef834749dd75.png",
"name": "A plot of all roots of all Littlewood polynomials of degree 16. They form a rough ring around zero, with little filigree type bits around the edges.",
"blurhash": "UXQmC^j[~ij[j[fQfQfQ~ifQIZfQj[fQfQfQ",
"focalPoint": [
0,
0
],
"width": 2000,
"height": 2001
}
],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/illustration",
"name": "#illustration"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/graphics",
"name": "#graphics"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/sagemath",
"name": "#sagemath"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/plotting",
"name": "#plotting"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/polynomials",
"name": "#polynomials"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/littlewoodpolynomials",
"name": "#littlewoodpolynomials"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/littlewood",
"name": "#littlewood"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/mathematics",
"name": "#mathematics"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/matthewconroy/statuses/113660298688666132/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/matthewconroy/statuses/113660298688666132/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/matthewconroy/statuses/113660298688666132/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/matthewconroy/statuses/113660298688666132/likes",
"type": "Collection",
"totalItems": 6
},
"shares": {
"id": "https://mathstodon.xyz/users/matthewconroy/statuses/113660298688666132/shares",
"type": "Collection",
"totalItems": 0
}
}