A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889/activity",
"type": "Create",
"actor": "https://mathstodon.xyz/users/jsm28",
"published": "2023-05-31T23:29:03Z",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/jsm28/followers",
"https://mathstodon.xyz/users/csk",
"https://sigmoid.social/users/moultano"
],
"object": {
"id": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889",
"type": "Note",
"summary": null,
"inReplyTo": "https://sigmoid.social/users/moultano/statuses/110464332316557744",
"published": "2023-05-31T23:29:03Z",
"url": "https://mathstodon.xyz/@jsm28/110465891954239889",
"attributedTo": "https://mathstodon.xyz/users/jsm28",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/jsm28/followers",
"https://mathstodon.xyz/users/csk",
"https://sigmoid.social/users/moultano"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889",
"inReplyToAtomUri": "https://sigmoid.social/users/moultano/statuses/110464332316557744",
"conversation": "tag:mathstodon.xyz,2023-05-29:objectId=52147834:objectType=Conversation",
"content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://sigmoid.social/@moultano\" class=\"u-url mention\">@<span>moultano</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@csk\" class=\"u-url mention\">@<span>csk</span></a></span> I think there's a theorem that for any aperiodic set of tiles (that tiles with finitely many possible local configurations and with tiles appearing in finitely many orientations, at least) it's not possible to produce a tiling purely by applying local rules: you should always expect to need backtracking.</p>",
"contentMap": {
"en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://sigmoid.social/@moultano\" class=\"u-url mention\">@<span>moultano</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@csk\" class=\"u-url mention\">@<span>csk</span></a></span> I think there's a theorem that for any aperiodic set of tiles (that tiles with finitely many possible local configurations and with tiles appearing in finitely many orientations, at least) it's not possible to produce a tiling purely by applying local rules: you should always expect to need backtracking.</p>"
},
"attachment": [],
"tag": [
{
"type": "Mention",
"href": "https://sigmoid.social/users/moultano",
"name": "@moultano@sigmoid.social"
},
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/csk",
"name": "@csk"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889/likes",
"type": "Collection",
"totalItems": 2
},
"shares": {
"id": "https://mathstodon.xyz/users/jsm28/statuses/110465891954239889/shares",
"type": "Collection",
"totalItems": 0
}
}
}