ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/jsm28/statuses/110074881058441953", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/Danpiker/statuses/110072853652942458", "published": "2023-03-23T22:09:51Z", "url": "https://mathstodon.xyz/@jsm28/110074881058441953", "attributedTo": "https://mathstodon.xyz/users/jsm28", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/jsm28/followers", "https://mathstodon.xyz/users/christianp", "https://mathstodon.xyz/users/nilesjohnson", "https://mathstodon.xyz/users/Danpiker" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/jsm28/statuses/110074881058441953", "inReplyToAtomUri": "https://mathstodon.xyz/users/Danpiker/statuses/110072853652942458", "conversation": "tag:mathstodon.xyz,2023-03-23:objectId=45089694:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@Danpiker\" class=\"u-url mention\">@<span>Danpiker</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@nilesjohnson\" class=\"u-url mention\">@<span>nilesjohnson</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@christianp\" class=\"u-url mention\">@<span>christianp</span></a></span> My conclusion was that for a two-dimensional topological disk monotile, the only flexibility is varying the side lengths as discussed in the paper; you can&#39;t change the sides away from straight lines or change the angles. The metatile shapes are much more flexible, however.</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@Danpiker\" class=\"u-url mention\">@<span>Danpiker</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@nilesjohnson\" class=\"u-url mention\">@<span>nilesjohnson</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@christianp\" class=\"u-url mention\">@<span>christianp</span></a></span> My conclusion was that for a two-dimensional topological disk monotile, the only flexibility is varying the side lengths as discussed in the paper; you can&#39;t change the sides away from straight lines or change the angles. The metatile shapes are much more flexible, however.</p>" }, "attachment": [], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/Danpiker", "name": "@Danpiker" }, { "type": "Mention", "href": "https://mathstodon.xyz/users/nilesjohnson", "name": "@nilesjohnson" }, { "type": "Mention", "href": "https://mathstodon.xyz/users/christianp", "name": "@christianp" } ], "replies": { "id": "https://mathstodon.xyz/users/jsm28/statuses/110074881058441953/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/jsm28/statuses/110074881058441953/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/jsm28/statuses/110074881058441953/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/jsm28/statuses/110074881058441953/likes", "type": "Collection", "totalItems": 2 }, "shares": { "id": "https://mathstodon.xyz/users/jsm28/statuses/110074881058441953/shares", "type": "Collection", "totalItems": 0 } }