A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/jsm28/statuses/110060827238600558",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/robinhouston/statuses/110060162086154935",
"published": "2023-03-21T10:35:46Z",
"url": "https://mathstodon.xyz/@jsm28/110060827238600558",
"attributedTo": "https://mathstodon.xyz/users/jsm28",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/jsm28/followers",
"https://mathstodon.xyz/users/robinhouston"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/jsm28/statuses/110060827238600558",
"inReplyToAtomUri": "https://mathstodon.xyz/users/robinhouston/statuses/110060162086154935",
"conversation": "tag:mathstodon.xyz,2023-03-21:objectId=44853221:objectType=Conversation",
"content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@robinhouston\" class=\"u-url mention\">@<span>robinhouston</span></a></span> As far as I know it's open whether there could be an aperiodic monotile that tiles using only translates and copies under 180-degree rotation (Schattschneider asked whether all tiles that tile like that must satisfy the Conway criterion, c.f. the results of Girault-Beauquier and Nivat and Kenyon for tilings using translates only).</p>",
"contentMap": {
"en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@robinhouston\" class=\"u-url mention\">@<span>robinhouston</span></a></span> As far as I know it's open whether there could be an aperiodic monotile that tiles using only translates and copies under 180-degree rotation (Schattschneider asked whether all tiles that tile like that must satisfy the Conway criterion, c.f. the results of Girault-Beauquier and Nivat and Kenyon for tilings using translates only).</p>"
},
"attachment": [],
"tag": [
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/robinhouston",
"name": "@robinhouston"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/jsm28/statuses/110060827238600558/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/jsm28/statuses/110060827238600558/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/jsm28/statuses/110060827238600558/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/jsm28/statuses/110060827238600558/likes",
"type": "Collection",
"totalItems": 3
},
"shares": {
"id": "https://mathstodon.xyz/users/jsm28/statuses/110060827238600558/shares",
"type": "Collection",
"totalItems": 0
}
}