A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-12-11T00:41:04Z",
"url": "https://mathstodon.xyz/@joshuagrochow/113631406622066434",
"attributedTo": "https://mathstodon.xyz/users/joshuagrochow",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/joshuagrochow/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2024-12-11:objectId=127809422:objectType=Conversation",
"content": "<p>Just found an English translation of Emmy Noether's 1921 "Idealtheorie in Ringbereichen" ("Ideal Theory in Rings"): <a href=\"https://arxiv.org/abs/1401.2577\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1401.2577</span><span class=\"invisible\"></span></a></p><p>(while editing the wikipedia page on subdirect products - my first wiki edit to add an Emmy Noether reference! Turns out there's a direct lineage from Noether to Birkhoff's introduction of subdirect products in universal algebra. Just one more way in which she really revolutionized algebra.)</p><p><a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/AlgebraicGeomtry\" class=\"mention hashtag\" rel=\"tag\">#<span>AlgebraicGeomtry</span></a> <a href=\"https://mathstodon.xyz/tags/Algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>Algebra</span></a> <a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a></p>",
"contentMap": {
"en": "<p>Just found an English translation of Emmy Noether's 1921 "Idealtheorie in Ringbereichen" ("Ideal Theory in Rings"): <a href=\"https://arxiv.org/abs/1401.2577\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1401.2577</span><span class=\"invisible\"></span></a></p><p>(while editing the wikipedia page on subdirect products - my first wiki edit to add an Emmy Noether reference! Turns out there's a direct lineage from Noether to Birkhoff's introduction of subdirect products in universal algebra. Just one more way in which she really revolutionized algebra.)</p><p><a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/AlgebraicGeomtry\" class=\"mention hashtag\" rel=\"tag\">#<span>AlgebraicGeomtry</span></a> <a href=\"https://mathstodon.xyz/tags/Algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>Algebra</span></a> <a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a></p>"
},
"attachment": [],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/universalalgebra",
"name": "#universalalgebra"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/algebra",
"name": "#algebra"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/algebraicgeomtry",
"name": "#algebraicgeomtry"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/math",
"name": "#math"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/likes",
"type": "Collection",
"totalItems": 31
},
"shares": {
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/shares",
"type": "Collection",
"totalItems": 14
}
}