ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-12-11T00:41:04Z", "url": "https://mathstodon.xyz/@joshuagrochow/113631406622066434", "attributedTo": "https://mathstodon.xyz/users/joshuagrochow", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/joshuagrochow/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2024-12-11:objectId=127809422:objectType=Conversation", "content": "<p>Just found an English translation of Emmy Noether&#39;s 1921 &quot;Idealtheorie in Ringbereichen&quot; (&quot;Ideal Theory in Rings&quot;): <a href=\"https://arxiv.org/abs/1401.2577\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1401.2577</span><span class=\"invisible\"></span></a></p><p>(while editing the wikipedia page on subdirect products - my first wiki edit to add an Emmy Noether reference! Turns out there&#39;s a direct lineage from Noether to Birkhoff&#39;s introduction of subdirect products in universal algebra. Just one more way in which she really revolutionized algebra.)</p><p><a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/AlgebraicGeomtry\" class=\"mention hashtag\" rel=\"tag\">#<span>AlgebraicGeomtry</span></a> <a href=\"https://mathstodon.xyz/tags/Algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>Algebra</span></a> <a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a></p>", "contentMap": { "en": "<p>Just found an English translation of Emmy Noether&#39;s 1921 &quot;Idealtheorie in Ringbereichen&quot; (&quot;Ideal Theory in Rings&quot;): <a href=\"https://arxiv.org/abs/1401.2577\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/abs/1401.2577</span><span class=\"invisible\"></span></a></p><p>(while editing the wikipedia page on subdirect products - my first wiki edit to add an Emmy Noether reference! Turns out there&#39;s a direct lineage from Noether to Birkhoff&#39;s introduction of subdirect products in universal algebra. Just one more way in which she really revolutionized algebra.)</p><p><a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/AlgebraicGeomtry\" class=\"mention hashtag\" rel=\"tag\">#<span>AlgebraicGeomtry</span></a> <a href=\"https://mathstodon.xyz/tags/Algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>Algebra</span></a> <a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a></p>" }, "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/universalalgebra", "name": "#universalalgebra" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/algebra", "name": "#algebra" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/algebraicgeomtry", "name": "#algebraicgeomtry" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/math", "name": "#math" } ], "replies": { "id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/likes", "type": "Collection", "totalItems": 31 }, "shares": { "id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113631406622066434/shares", "type": "Collection", "totalItems": 14 } }