A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113307081389225241",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-10-14T18:00:54Z",
"url": "https://mathstodon.xyz/@joshuagrochow/113307081389225241",
"attributedTo": "https://mathstodon.xyz/users/joshuagrochow",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/joshuagrochow/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/joshuagrochow/statuses/113307081389225241",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2024-10-14:objectId=118830937:objectType=Conversation",
"content": "<p>The notion of epimorphism can be quite different from surjection, e.g. in Rings. </p><p>Though I recently learned epimorphisms can be characterized in terms of Isbell's zig-zags: <a href=\"https://en.wikipedia.org/wiki/Isbell%27s_zigzag_theorem\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Isbell%2</span><span class=\"invisible\">7s_zigzag_theorem</span></a>.</p><p>Whereas monic seems to capture the notion of "injective" quite well in a categorical def. And indeed the two agree on any variety of algebras in the sense of universal algebra.</p><p><a href=\"https://mathstodon.xyz/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://mathstodon.xyz/tags/CategoryTheory\" class=\"mention hashtag\" rel=\"tag\">#<span>CategoryTheory</span></a> <a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a></p>",
"contentMap": {
"en": "<p>The notion of epimorphism can be quite different from surjection, e.g. in Rings. </p><p>Though I recently learned epimorphisms can be characterized in terms of Isbell's zig-zags: <a href=\"https://en.wikipedia.org/wiki/Isbell%27s_zigzag_theorem\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Isbell%2</span><span class=\"invisible\">7s_zigzag_theorem</span></a>.</p><p>Whereas monic seems to capture the notion of "injective" quite well in a categorical def. And indeed the two agree on any variety of algebras in the sense of universal algebra.</p><p><a href=\"https://mathstodon.xyz/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://mathstodon.xyz/tags/CategoryTheory\" class=\"mention hashtag\" rel=\"tag\">#<span>CategoryTheory</span></a> <a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a></p>"
},
"attachment": [],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/math",
"name": "#math"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/universalalgebra",
"name": "#universalalgebra"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/categorytheory",
"name": "#categorytheory"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/algebra",
"name": "#algebra"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113307081389225241/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/joshuagrochow/statuses/113307081389225241/replies?min_id=113307082296952699&page=true",
"partOf": "https://mathstodon.xyz/users/joshuagrochow/statuses/113307081389225241/replies",
"items": [
"https://mathstodon.xyz/users/joshuagrochow/statuses/113307082296952699"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113307081389225241/likes",
"type": "Collection",
"totalItems": 4
},
"shares": {
"id": "https://mathstodon.xyz/users/joshuagrochow/statuses/113307081389225241/shares",
"type": "Collection",
"totalItems": 2
}
}