A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/djspacewhale/statuses/113516464399958752",
"published": "2024-11-20T17:59:24Z",
"url": "https://mathstodon.xyz/@jonmsterling/113516580997518327",
"attributedTo": "https://mathstodon.xyz/users/jonmsterling",
"to": [
"https://mathstodon.xyz/users/jonmsterling/followers"
],
"cc": [
"https://www.w3.org/ns/activitystreams#Public",
"https://mathstodon.xyz/users/andrejbauer",
"https://mathstodon.xyz/users/ohad",
"https://mathstodon.xyz/users/MartinEscardo",
"https://mathstodon.xyz/users/djspacewhale"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327",
"inReplyToAtomUri": "https://mathstodon.xyz/users/djspacewhale/statuses/113516464399958752",
"conversation": "tag:mathstodon.xyz,2024-11-17:objectId=124197665:objectType=Conversation",
"content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@djspacewhale\" class=\"u-url mention\">@<span>djspacewhale</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@MartinEscardo\" class=\"u-url mention\">@<span>MartinEscardo</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@ohad\" class=\"u-url mention\">@<span>ohad</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@andrejbauer\" class=\"u-url mention\">@<span>andrejbauer</span></a></span> I mean, if you actually read the page, you see that the general definition is meant to be instantiated with specific spaces of coefficients (e.g. an eilenberg–maclane space)... So this seems to me like a pretty cheap shot (especially considering how many valid targets for a critique of this form can be found in the nLab). </p><p>You can argue that this should not be named "cohomology", but it does remain that a lot of the purely formal aspects can be developed at this level. And category theory is, naturally, mostly a tool to isolate the purely formal elements of any area of practice.</p><p>By the way, for those watching the thread, what is valuable about the nPOV here is that the definition can be stated so as to speak simplistically about (truncations of) hom spaces, fully abstracting away the business about chain complexes (under Dold-Kan, these are presenting higher groups). The generality was not the valuable part...</p>",
"contentMap": {
"en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@djspacewhale\" class=\"u-url mention\">@<span>djspacewhale</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@MartinEscardo\" class=\"u-url mention\">@<span>MartinEscardo</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@ohad\" class=\"u-url mention\">@<span>ohad</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@andrejbauer\" class=\"u-url mention\">@<span>andrejbauer</span></a></span> I mean, if you actually read the page, you see that the general definition is meant to be instantiated with specific spaces of coefficients (e.g. an eilenberg–maclane space)... So this seems to me like a pretty cheap shot (especially considering how many valid targets for a critique of this form can be found in the nLab). </p><p>You can argue that this should not be named "cohomology", but it does remain that a lot of the purely formal aspects can be developed at this level. And category theory is, naturally, mostly a tool to isolate the purely formal elements of any area of practice.</p><p>By the way, for those watching the thread, what is valuable about the nPOV here is that the definition can be stated so as to speak simplistically about (truncations of) hom spaces, fully abstracting away the business about chain complexes (under Dold-Kan, these are presenting higher groups). The generality was not the valuable part...</p>"
},
"updated": "2024-11-20T19:56:44Z",
"attachment": [],
"tag": [
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/djspacewhale",
"name": "@djspacewhale"
},
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/MartinEscardo",
"name": "@MartinEscardo"
},
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/ohad",
"name": "@ohad"
},
{
"type": "Mention",
"href": "https://mathstodon.xyz/users/andrejbauer",
"name": "@andrejbauer"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327/likes",
"type": "Collection",
"totalItems": 0
},
"shares": {
"id": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327/shares",
"type": "Collection",
"totalItems": 0
}
}