ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/j_bertolotti/statuses/114614427813242017", "type": "Note", "summary": null, "inReplyTo": null, "published": "2025-06-02T15:16:17Z", "url": "https://mathstodon.xyz/@j_bertolotti/114614427813242017", "attributedTo": "https://mathstodon.xyz/users/j_bertolotti", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/j_bertolotti/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/j_bertolotti/statuses/114614427813242017", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2025-06-02:objectId=156201330:objectType=Conversation", "content": "<p><a href=\"https://mathstodon.xyz/tags/PhysicsJournalClub\" class=\"mention hashtag\" rel=\"tag\">#<span>PhysicsJournalClub</span></a> <br />&quot;Model-free estimation of the Cramér–Rao bound for deep learning microscopy in complex media&quot;<br />by I. Starshynov et al.</p><p>Nat. Photon. (2025)<br /><a href=\"https://doi.org/10.1038/s41566-025-01657-6\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">doi.org/10.1038/s41566-025-016</span><span class=\"invisible\">57-6</span></a></p><p>As everybody who ever tried to orient themselves while immersed in thick fog knows, scattering scrambles information. The question &quot;how much information is still there?&quot; is not particularly interesting as the answer is &quot;essentially all of it&quot;, as elastic scattering can&#39;t destroy information. A much more interesting question is &quot;how much information can we retrieve?&quot; In order to even try to give an answer we need to be a bit more specific, so the authors placed a small reflective surface behind a scattering layer and asked how much information about its transverse position could be retrieved. This is a well-posed question, and the answer takes the form of a &quot;Cramér–Rao bound&quot; (<a href=\"https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Cram%C3%</span><span class=\"invisible\">A9r%E2%80%93Rao_bound</span></a>).<br />After estimating this upper bound, the authors investigate how well a trained neural network can do at this task, and show that a specifically built convolutional neural network can almost reach the theoretical bound.</p><p>[Conflict of interest: Ilya Starshynov (the first author) did his PhD in my group.]</p><p><a href=\"https://mathstodon.xyz/tags/Physics\" class=\"mention hashtag\" rel=\"tag\">#<span>Physics</span></a> <a href=\"https://mathstodon.xyz/tags/InformationTheory\" class=\"mention hashtag\" rel=\"tag\">#<span>InformationTheory</span></a> <a href=\"https://mathstodon.xyz/tags/Optics\" class=\"mention hashtag\" rel=\"tag\">#<span>Optics</span></a> <a href=\"https://mathstodon.xyz/tags/MachineLearning\" class=\"mention hashtag\" rel=\"tag\">#<span>MachineLearning</span></a></p>", "contentMap": { "en": "<p><a href=\"https://mathstodon.xyz/tags/PhysicsJournalClub\" class=\"mention hashtag\" rel=\"tag\">#<span>PhysicsJournalClub</span></a> <br />&quot;Model-free estimation of the Cramér–Rao bound for deep learning microscopy in complex media&quot;<br />by I. Starshynov et al.</p><p>Nat. Photon. (2025)<br /><a href=\"https://doi.org/10.1038/s41566-025-01657-6\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">doi.org/10.1038/s41566-025-016</span><span class=\"invisible\">57-6</span></a></p><p>As everybody who ever tried to orient themselves while immersed in thick fog knows, scattering scrambles information. The question &quot;how much information is still there?&quot; is not particularly interesting as the answer is &quot;essentially all of it&quot;, as elastic scattering can&#39;t destroy information. A much more interesting question is &quot;how much information can we retrieve?&quot; In order to even try to give an answer we need to be a bit more specific, so the authors placed a small reflective surface behind a scattering layer and asked how much information about its transverse position could be retrieved. This is a well-posed question, and the answer takes the form of a &quot;Cramér–Rao bound&quot; (<a href=\"https://en.wikipedia.org/wiki/Cram%C3%A9r%E2%80%93Rao_bound\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">en.wikipedia.org/wiki/Cram%C3%</span><span class=\"invisible\">A9r%E2%80%93Rao_bound</span></a>).<br />After estimating this upper bound, the authors investigate how well a trained neural network can do at this task, and show that a specifically built convolutional neural network can almost reach the theoretical bound.</p><p>[Conflict of interest: Ilya Starshynov (the first author) did his PhD in my group.]</p><p><a href=\"https://mathstodon.xyz/tags/Physics\" class=\"mention hashtag\" rel=\"tag\">#<span>Physics</span></a> <a href=\"https://mathstodon.xyz/tags/InformationTheory\" class=\"mention hashtag\" rel=\"tag\">#<span>InformationTheory</span></a> <a href=\"https://mathstodon.xyz/tags/Optics\" class=\"mention hashtag\" rel=\"tag\">#<span>Optics</span></a> <a href=\"https://mathstodon.xyz/tags/MachineLearning\" class=\"mention hashtag\" rel=\"tag\">#<span>MachineLearning</span></a></p>" }, "updated": "2025-06-02T15:30:19Z", "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/machinelearning", "name": "#machinelearning" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/optics", "name": "#optics" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/informationtheory", "name": "#informationtheory" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/physics", "name": "#physics" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/physicsjournalclub", "name": "#physicsjournalclub" } ], "replies": { "id": "https://mathstodon.xyz/users/j_bertolotti/statuses/114614427813242017/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/j_bertolotti/statuses/114614427813242017/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/j_bertolotti/statuses/114614427813242017/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/j_bertolotti/statuses/114614427813242017/likes", "type": "Collection", "totalItems": 6 }, "shares": { "id": "https://mathstodon.xyz/users/j_bertolotti/statuses/114614427813242017/shares", "type": "Collection", "totalItems": 4 } }