A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies",
"type": "Collection",
"first": {
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies?page=true",
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies",
"items": [
{
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626",
"published": "2022-11-05T11:16:10Z",
"url": "https://mathstodon.xyz/@gregeganSF/109290911841425320",
"attributedTo": "https://mathstodon.xyz/users/gregeganSF",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/gregeganSF/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320",
"inReplyToAtomUri": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626",
"conversation": "tag:mathstodon.xyz,2022-11-02:objectId=28211198:objectType=Conversation",
"content": "<p>In our grid above, every row and every column has i,j,k appear as the second quaternion in the pair. So any q that is a *simultaneous* eigenvector of all 3 rotations in a row or a column will map i,j and k to ± the first quaternion in the pair, which is always one of i,j,k.</p><p>So q is a symmetry of the octahedron.</p>",
"contentMap": {
"en": "<p>In our grid above, every row and every column has i,j,k appear as the second quaternion in the pair. So any q that is a *simultaneous* eigenvector of all 3 rotations in a row or a column will map i,j and k to ± the first quaternion in the pair, which is always one of i,j,k.</p><p>So q is a symmetry of the octahedron.</p>"
},
"attachment": [],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/likes",
"type": "Collection",
"totalItems": 1
},
"shares": {
"id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/shares",
"type": "Collection",
"totalItems": 0
}
}
]
}
}