ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies", "type": "Collection", "first": { "id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies?page=true", "type": "CollectionPage", "next": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626/replies", "items": [ { "id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626", "published": "2022-11-05T11:16:10Z", "url": "https://mathstodon.xyz/@gregeganSF/109290911841425320", "attributedTo": "https://mathstodon.xyz/users/gregeganSF", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/gregeganSF/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320", "inReplyToAtomUri": "https://mathstodon.xyz/users/gregeganSF/statuses/109290910932627626", "conversation": "tag:mathstodon.xyz,2022-11-02:objectId=28211198:objectType=Conversation", "content": "<p>In our grid above, every row and every column has i,j,k appear as the second quaternion in the pair. So any q that is a *simultaneous* eigenvector of all 3 rotations in a row or a column will map i,j and k to ± the first quaternion in the pair, which is always one of i,j,k.</p><p>So q is a symmetry of the octahedron.</p>", "contentMap": { "en": "<p>In our grid above, every row and every column has i,j,k appear as the second quaternion in the pair. So any q that is a *simultaneous* eigenvector of all 3 rotations in a row or a column will map i,j and k to ± the first quaternion in the pair, which is always one of i,j,k.</p><p>So q is a symmetry of the octahedron.</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/gregeganSF/statuses/109290911841425320/shares", "type": "Collection", "totalItems": 0 } } ] } }