ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/egbertrijke/statuses/109555699321931029/replies", "type": "Collection", "first": { "id": "https://mathstodon.xyz/users/egbertrijke/statuses/109555699321931029/replies?page=true", "type": "CollectionPage", "next": "https://mathstodon.xyz/users/egbertrijke/statuses/109555699321931029/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/egbertrijke/statuses/109555699321931029/replies", "items": [ { "id": "https://mathstodon.xyz/users/egbertrijke/statuses/109555703361712920", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/egbertrijke/statuses/109555699321931029", "published": "2022-12-22T05:36:08Z", "url": "https://mathstodon.xyz/@egbertrijke/109555703361712920", "attributedTo": "https://mathstodon.xyz/users/egbertrijke", "to": [ "https://mathstodon.xyz/users/egbertrijke/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/egbertrijke/statuses/109555703361712920", "inReplyToAtomUri": "https://mathstodon.xyz/users/egbertrijke/statuses/109555699321931029", "conversation": "tag:mathstodon.xyz,2022-12-22:objectId=34648653:objectType=Conversation", "content": "<p>From the abstract:</p><p>This is an introductory textbook to univalent mathematics and homotopy type theory, a mathematical foundation that takes advantage of the structural nature of mathematical definitions and constructions. It is common in mathematical practice to consider equivalent objects to be the same, for example, to identify isomorphic groups. In set theory it is not possible to make this common practice formal.</p>", "contentMap": { "en": "<p>From the abstract:</p><p>This is an introductory textbook to univalent mathematics and homotopy type theory, a mathematical foundation that takes advantage of the structural nature of mathematical definitions and constructions. It is common in mathematical practice to consider equivalent objects to be the same, for example, to identify isomorphic groups. In set theory it is not possible to make this common practice formal.</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/egbertrijke/statuses/109555703361712920/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/egbertrijke/statuses/109555703361712920/replies?min_id=109555704468305838&page=true", "partOf": "https://mathstodon.xyz/users/egbertrijke/statuses/109555703361712920/replies", "items": [ "https://mathstodon.xyz/users/egbertrijke/statuses/109555704468305838" ] } }, "likes": { "id": "https://mathstodon.xyz/users/egbertrijke/statuses/109555703361712920/likes", "type": "Collection", "totalItems": 6 }, "shares": { "id": "https://mathstodon.xyz/users/egbertrijke/statuses/109555703361712920/shares", "type": "Collection", "totalItems": 2 } } ] } }