ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/djspacewhale/statuses/113517317429605692", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327", "published": "2024-11-20T21:06:41Z", "url": "https://mathstodon.xyz/@djspacewhale/113517317429605692", "attributedTo": "https://mathstodon.xyz/users/djspacewhale", "to": [ "https://mathstodon.xyz/users/djspacewhale/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public", "https://mathstodon.xyz/users/andrejbauer", "https://mathstodon.xyz/users/ohad", "https://mathstodon.xyz/users/MartinEscardo", "https://mathstodon.xyz/users/jonmsterling" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/djspacewhale/statuses/113517317429605692", "inReplyToAtomUri": "https://mathstodon.xyz/users/jonmsterling/statuses/113516580997518327", "conversation": "tag:mathstodon.xyz,2024-11-17:objectId=124197665:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@jonmsterling\" class=\"u-url mention\">@<span>jonmsterling</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@MartinEscardo\" class=\"u-url mention\">@<span>MartinEscardo</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@ohad\" class=\"u-url mention\">@<span>ohad</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@andrejbauer\" class=\"u-url mention\">@<span>andrejbauer</span></a></span> ok,,, I still don&#39;t know if I&#39;m happy about calling it &quot;cohomology&quot; but do see the utility in having a shorthand for &quot;the 0-truncated hom-space into...&quot;. I&#39;d be curious how much of generalized cohomology can be built, as you say, just using representability, though I&#39;m sure that&#39;s in their references on the page. On your note about cohomology always being taken &quot;with coefficients in _&quot;, is the substantive difference between this language and &quot;evaluation of the functor represented by _&quot; solely in the 0-truncation of the former? or should we, even when spectra à la generalized Eilenberg-MacLane cohomology theories are nowhere in sight, keep deloopings and &#39;potential&#39; higher cohomology in mind along the way?</p><p>As a postnote on where I&#39;m coming from, I tend to think of a cohomology theory as something represented by a spectrum, the extra algebraic structure induced on each cohomology set and suspension isomorphism and so on being what in my mind separates cohomology theories from the general business of representable functors...</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@jonmsterling\" class=\"u-url mention\">@<span>jonmsterling</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@MartinEscardo\" class=\"u-url mention\">@<span>MartinEscardo</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@ohad\" class=\"u-url mention\">@<span>ohad</span></a></span> <span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@andrejbauer\" class=\"u-url mention\">@<span>andrejbauer</span></a></span> ok,,, I still don&#39;t know if I&#39;m happy about calling it &quot;cohomology&quot; but do see the utility in having a shorthand for &quot;the 0-truncated hom-space into...&quot;. I&#39;d be curious how much of generalized cohomology can be built, as you say, just using representability, though I&#39;m sure that&#39;s in their references on the page. On your note about cohomology always being taken &quot;with coefficients in _&quot;, is the substantive difference between this language and &quot;evaluation of the functor represented by _&quot; solely in the 0-truncation of the former? or should we, even when spectra à la generalized Eilenberg-MacLane cohomology theories are nowhere in sight, keep deloopings and &#39;potential&#39; higher cohomology in mind along the way?</p><p>As a postnote on where I&#39;m coming from, I tend to think of a cohomology theory as something represented by a spectrum, the extra algebraic structure induced on each cohomology set and suspension isomorphism and so on being what in my mind separates cohomology theories from the general business of representable functors...</p>" }, "updated": "2024-11-20T21:14:04Z", "attachment": [], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/jonmsterling", "name": "@jonmsterling" }, { "type": "Mention", "href": "https://mathstodon.xyz/users/MartinEscardo", "name": "@MartinEscardo" }, { "type": "Mention", "href": "https://mathstodon.xyz/users/ohad", "name": "@ohad" }, { "type": "Mention", "href": "https://mathstodon.xyz/users/andrejbauer", "name": "@andrejbauer" } ], "replies": { "id": "https://mathstodon.xyz/users/djspacewhale/statuses/113517317429605692/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/djspacewhale/statuses/113517317429605692/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/djspacewhale/statuses/113517317429605692/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/djspacewhale/statuses/113517317429605692/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mathstodon.xyz/users/djspacewhale/statuses/113517317429605692/shares", "type": "Collection", "totalItems": 0 } }