ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/decompwlj/statuses/113541615864910392", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-11-25T04:06:06Z", "url": "https://mathstodon.xyz/@decompwlj/113541615864910392", "attributedTo": "https://mathstodon.xyz/users/decompwlj", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/decompwlj/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/decompwlj/statuses/113541615864910392", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2024-11-25:objectId=125388723:objectType=Conversation", "content": "<p>One day, one decomposition<br />A134618: Numbers such that the sum of cubes of their prime factors (taken with multiplicity) is a prime</p><p>3D graph, threejs - webGL ➡️ <a href=\"https://decompwlj.com/3Dgraph/A134618.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">decompwlj.com/3Dgraph/A134618.</span><span class=\"invisible\">html</span></a><br />2D graph, first 500 terms ➡️ <a href=\"https://decompwlj.com/2Dgraph500terms/A134618.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">decompwlj.com/2Dgraph500terms/</span><span class=\"invisible\">A134618.html</span></a></p><p><a href=\"https://mathstodon.xyz/tags/decompwlj\" class=\"mention hashtag\" rel=\"tag\">#<span>decompwlj</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/sequence\" class=\"mention hashtag\" rel=\"tag\">#<span>sequence</span></a> <a href=\"https://mathstodon.xyz/tags/OEIS\" class=\"mention hashtag\" rel=\"tag\">#<span>OEIS</span></a> <a href=\"https://mathstodon.xyz/tags/javascript\" class=\"mention hashtag\" rel=\"tag\">#<span>javascript</span></a> <a href=\"https://mathstodon.xyz/tags/php\" class=\"mention hashtag\" rel=\"tag\">#<span>php</span></a> <a href=\"https://mathstodon.xyz/tags/3D\" class=\"mention hashtag\" rel=\"tag\">#<span>3D</span></a> <a href=\"https://mathstodon.xyz/tags/numbers\" class=\"mention hashtag\" rel=\"tag\">#<span>numbers</span></a> <a href=\"https://mathstodon.xyz/tags/sum\" class=\"mention hashtag\" rel=\"tag\">#<span>sum</span></a> <a href=\"https://mathstodon.xyz/tags/cubes\" class=\"mention hashtag\" rel=\"tag\">#<span>cubes</span></a> <a href=\"https://mathstodon.xyz/tags/prime\" class=\"mention hashtag\" rel=\"tag\">#<span>prime</span></a> <a href=\"https://mathstodon.xyz/tags/factors\" class=\"mention hashtag\" rel=\"tag\">#<span>factors</span></a> <a href=\"https://mathstodon.xyz/tags/PrimeNumbers\" class=\"mention hashtag\" rel=\"tag\">#<span>PrimeNumbers</span></a> <a href=\"https://mathstodon.xyz/tags/graph\" class=\"mention hashtag\" rel=\"tag\">#<span>graph</span></a> <a href=\"https://mathstodon.xyz/tags/threejs\" class=\"mention hashtag\" rel=\"tag\">#<span>threejs</span></a> <a href=\"https://mathstodon.xyz/tags/webGL\" class=\"mention hashtag\" rel=\"tag\">#<span>webGL</span></a></p>", "contentMap": { "en": "<p>One day, one decomposition<br />A134618: Numbers such that the sum of cubes of their prime factors (taken with multiplicity) is a prime</p><p>3D graph, threejs - webGL ➡️ <a href=\"https://decompwlj.com/3Dgraph/A134618.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">decompwlj.com/3Dgraph/A134618.</span><span class=\"invisible\">html</span></a><br />2D graph, first 500 terms ➡️ <a href=\"https://decompwlj.com/2Dgraph500terms/A134618.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">decompwlj.com/2Dgraph500terms/</span><span class=\"invisible\">A134618.html</span></a></p><p><a href=\"https://mathstodon.xyz/tags/decompwlj\" class=\"mention hashtag\" rel=\"tag\">#<span>decompwlj</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/mathematics\" class=\"mention hashtag\" rel=\"tag\">#<span>mathematics</span></a> <a href=\"https://mathstodon.xyz/tags/sequence\" class=\"mention hashtag\" rel=\"tag\">#<span>sequence</span></a> <a href=\"https://mathstodon.xyz/tags/OEIS\" class=\"mention hashtag\" rel=\"tag\">#<span>OEIS</span></a> <a href=\"https://mathstodon.xyz/tags/javascript\" class=\"mention hashtag\" rel=\"tag\">#<span>javascript</span></a> <a href=\"https://mathstodon.xyz/tags/php\" class=\"mention hashtag\" rel=\"tag\">#<span>php</span></a> <a href=\"https://mathstodon.xyz/tags/3D\" class=\"mention hashtag\" rel=\"tag\">#<span>3D</span></a> <a href=\"https://mathstodon.xyz/tags/numbers\" class=\"mention hashtag\" rel=\"tag\">#<span>numbers</span></a> <a href=\"https://mathstodon.xyz/tags/sum\" class=\"mention hashtag\" rel=\"tag\">#<span>sum</span></a> <a href=\"https://mathstodon.xyz/tags/cubes\" class=\"mention hashtag\" rel=\"tag\">#<span>cubes</span></a> <a href=\"https://mathstodon.xyz/tags/prime\" class=\"mention hashtag\" rel=\"tag\">#<span>prime</span></a> <a href=\"https://mathstodon.xyz/tags/factors\" class=\"mention hashtag\" rel=\"tag\">#<span>factors</span></a> <a href=\"https://mathstodon.xyz/tags/PrimeNumbers\" class=\"mention hashtag\" rel=\"tag\">#<span>PrimeNumbers</span></a> <a href=\"https://mathstodon.xyz/tags/graph\" class=\"mention hashtag\" rel=\"tag\">#<span>graph</span></a> <a href=\"https://mathstodon.xyz/tags/threejs\" class=\"mention hashtag\" rel=\"tag\">#<span>threejs</span></a> <a href=\"https://mathstodon.xyz/tags/webGL\" class=\"mention hashtag\" rel=\"tag\">#<span>webGL</span></a></p>" }, "attachment": [ { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/113/541/614/127/944/870/original/81cc9ed7e555f91c.jpg", "name": "Decomposition into weight × level + jump of A134618 in 2D (log(weight), log(level))", "blurhash": "U4S$r*M{~q_3xuD%Rj?b_3-;D%9F?b?bIU4n", "focalPoint": [ 0, 0 ], "width": 600, "height": 600 }, { "type": "Document", "mediaType": "image/jpeg", "url": "https://media.mathstodon.xyz/media_attachments/files/113/541/614/735/542/006/original/5bad13d1d3036a76.jpg", "name": "Decomposition into weight × level + jump of A134618 in 3D (threejs - WebGL) (log(weight), log(level), log(jump))", "blurhash": "UBSijZbv?HxDD+ofxtn$_2oJM{R-~oV@IVS5", "focalPoint": [ 0, 0 ], "width": 1246, "height": 683 } ], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/webgl", "name": "#webgl" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/threejs", "name": "#threejs" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/graph", "name": "#graph" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/primenumbers", "name": "#primenumbers" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/factors", "name": "#factors" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/prime", "name": "#prime" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/cubes", "name": "#cubes" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/SuM", "name": "#SuM" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/numbers", "name": "#numbers" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/3d", "name": "#3d" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/php", "name": "#php" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/javascript", "name": "#javascript" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/oeis", "name": "#oeis" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/sequence", "name": "#sequence" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/mathematics", "name": "#mathematics" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/math", "name": "#math" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/decompwlj", "name": "#decompwlj" } ], "replies": { "id": "https://mathstodon.xyz/users/decompwlj/statuses/113541615864910392/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/decompwlj/statuses/113541615864910392/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/decompwlj/statuses/113541615864910392/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/decompwlj/statuses/113541615864910392/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mathstodon.xyz/users/decompwlj/statuses/113541615864910392/shares", "type": "Collection", "totalItems": 2 } }