ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/davidradcliffe/statuses/113307833618766531", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-10-14T21:12:12Z", "url": "https://mathstodon.xyz/@davidradcliffe/113307833618766531", "attributedTo": "https://mathstodon.xyz/users/davidradcliffe", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/davidradcliffe/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/davidradcliffe/statuses/113307833618766531", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2024-10-14:objectId=118856731:objectType=Conversation", "content": "<p>If N is the product of two primes, p &lt; q, then 𝑝=gcd(𝑁,⌊√𝑁⌋!) . This is not a practical factorization method, because we don&#39;t know an efficient algorithm to compute factorials mod N. But it makes me wonder if a similar sequence of highly composite numbers could be used as the basis of an efficient algorithm for integer factorization.</p>", "contentMap": { "en": "<p>If N is the product of two primes, p &lt; q, then 𝑝=gcd(𝑁,⌊√𝑁⌋!) . This is not a practical factorization method, because we don&#39;t know an efficient algorithm to compute factorials mod N. But it makes me wonder if a similar sequence of highly composite numbers could be used as the basis of an efficient algorithm for integer factorization.</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/davidradcliffe/statuses/113307833618766531/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/davidradcliffe/statuses/113307833618766531/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/davidradcliffe/statuses/113307833618766531/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/davidradcliffe/statuses/113307833618766531/likes", "type": "Collection", "totalItems": 2 }, "shares": { "id": "https://mathstodon.xyz/users/davidradcliffe/statuses/113307833618766531/shares", "type": "Collection", "totalItems": 0 } }