ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" } } ], "id": "https://mathstodon.xyz/users/csk/statuses/110454766587723863", "type": "Note", "summary": null, "inReplyTo": null, "published": "2023-05-30T00:19:44Z", "url": "https://mathstodon.xyz/@csk/110454766587723863", "attributedTo": "https://mathstodon.xyz/users/csk", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/csk/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/csk/statuses/110454766587723863", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2023-05-30:objectId=52149297:objectType=Conversation", "content": "<p>When we started, we assumed that it was going to be challenging to do computations on Spectres, because unlike hats and turtles, they&#39;re not polyforms. But Joseph figured out that every tiling by Spectres is equivalent to a tiling by a mix of hats and turtles, which lets us work in the nice discrete world of the kite grid. See the animation at <a href=\"https://www.youtube.com/watch?v=K6wXQvL5KRo\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">youtube.com/watch?v=K6wXQvL5KR</span><span class=\"invisible\">o</span></a>. (8/n)</p>", "contentMap": { "en": "<p>When we started, we assumed that it was going to be challenging to do computations on Spectres, because unlike hats and turtles, they&#39;re not polyforms. But Joseph figured out that every tiling by Spectres is equivalent to a tiling by a mix of hats and turtles, which lets us work in the nice discrete world of the kite grid. See the animation at <a href=\"https://www.youtube.com/watch?v=K6wXQvL5KRo\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://www.</span><span class=\"ellipsis\">youtube.com/watch?v=K6wXQvL5KR</span><span class=\"invisible\">o</span></a>. (8/n)</p>" }, "updated": "2023-05-30T00:20:30Z", "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/110/454/769/436/092/441/original/ac02c37c8806d747.png", "name": null, "blurhash": "U8S6JVNJ-=xa_NjY.8xv?vs:%Mof4TM|M{j?", "width": 1333, "height": 899 } ], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/csk/statuses/110454766587723863/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/csk/statuses/110454766587723863/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/csk/statuses/110454766587723863/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/csk/statuses/110454766587723863/likes", "type": "Collection", "totalItems": 33 }, "shares": { "id": "https://mathstodon.xyz/users/csk/statuses/110454766587723863/shares", "type": "Collection", "totalItems": 9 } }