A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
}
}
],
"id": "https://mathstodon.xyz/users/csk/statuses/110454723575904775",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/csk/statuses/110454704596880414",
"published": "2023-05-30T00:08:47Z",
"url": "https://mathstodon.xyz/@csk/110454723575904775",
"attributedTo": "https://mathstodon.xyz/users/csk",
"to": [
"https://mathstodon.xyz/users/csk/followers"
],
"cc": [
"https://www.w3.org/ns/activitystreams#Public"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/csk/statuses/110454723575904775",
"inReplyToAtomUri": "https://mathstodon.xyz/users/csk/statuses/110454704596880414",
"conversation": "tag:mathstodon.xyz,2023-05-29:objectId=52147834:objectType=Conversation",
"content": "<p>After a couple of months of work, we cracked it: If you only allow yourself to tile by translations and rotations, then Tile(1,1) admits only non-periodic tilings! We call this a "weakly chiral aperiodic monotile" -- it's aperiodic in a reflection-free universe, but tiles periodically if you're allowed to use reflections. </p><p>The tiling is reminiscent of, but not identical to, hat tilings -- it contains a sparse population of "odd" tiles, which are rotated by odd multiples of 30 degrees relative to all other tiles. (5/n)</p>",
"contentMap": {
"en": "<p>After a couple of months of work, we cracked it: If you only allow yourself to tile by translations and rotations, then Tile(1,1) admits only non-periodic tilings! We call this a "weakly chiral aperiodic monotile" -- it's aperiodic in a reflection-free universe, but tiles periodically if you're allowed to use reflections. </p><p>The tiling is reminiscent of, but not identical to, hat tilings -- it contains a sparse population of "odd" tiles, which are rotated by odd multiples of 30 degrees relative to all other tiles. (5/n)</p>"
},
"attachment": [
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mathstodon.xyz/media_attachments/files/110/454/719/433/231/469/original/e32e5174e15fe581.png",
"name": "A computer-generated patch of Tile(1,1) tiles, with odd tiles shaded in green.",
"blurhash": "U1R3TU%MRiod-;WAogD$?c%Mof%N?bxuoft8",
"focalPoint": [
0,
0
],
"width": 1500,
"height": 1382
}
],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/csk/statuses/110454723575904775/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/csk/statuses/110454723575904775/replies?min_id=110454742459648912&page=true",
"partOf": "https://mathstodon.xyz/users/csk/statuses/110454723575904775/replies",
"items": [
"https://mathstodon.xyz/users/csk/statuses/110454742459648912"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/csk/statuses/110454723575904775/likes",
"type": "Collection",
"totalItems": 134
},
"shares": {
"id": "https://mathstodon.xyz/users/csk/statuses/110454723575904775/shares",
"type": "Collection",
"totalItems": 58
}
}