ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/caten/statuses/114201690502682403", "type": "Note", "summary": null, "inReplyTo": null, "published": "2025-03-21T17:51:46Z", "url": "https://mathstodon.xyz/@caten/114201690502682403", "attributedTo": "https://mathstodon.xyz/users/caten", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/caten/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/caten/statuses/114201690502682403", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2025-03-21:objectId=144486451:objectType=Conversation", "content": "<p>A fundamental result in universal algebra is the Subdirect Representation Theorem, which tells us how to decompose an algebra \\(A\\) into its &quot;basic parts&quot;. Formally, we say that \\(A\\) is a subdirect product of \\(A_1\\), \\(A_2\\), ..., \\(A_n\\) when \\(A\\) is a subalgebra of the product<br />\\[<br /> A_1\\times A_2\\times\\cdots\\times A_n<br />\\]<br />and for each index \\(1\\le i\\le n\\) we have for the projection \\(\\pi_i\\) that \\(\\pi_i(A)=A_i\\). In other words, a subdirect product &quot;uses each component completely&quot;, but may be smaller than the full product.</p><p>A trivial circumstance is that \\(\\pi_i:A\\to A_i\\) is an isomorphism for some \\(i\\). The remaining components would then be superfluous. If an algebra \\(A\\) has the property than any way of representing it as a subdirect product is trivial in this sense, we say that \\(A\\) is &quot;subdirectly irreducible&quot;.</p><p>Subdirectly irreducible algebras generalize simple algebras. Subdirectly irreducible groups include all simple groups, as well as the cyclic \\(p\\)-groups \\(\\mathbb{Z}_{p^n}\\) and the Prüfer groups \\(\\mathbb{Z}_{p^\\infty}\\).</p><p>In the case of lattices, there is no known classification of the finite subdirectly irreducible (or simple) lattices. This page (<a href=\"https://math.chapman.edu/~jipsen/posets/si_lattices92.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">math.chapman.edu/~jipsen/poset</span><span class=\"invisible\">s/si_lattices92.html</span></a>) by Peter Jipsen has diagrams showing the 92 different nontrivial subdirectly irreducible lattices of order at most 8. See any patterns?</p><p>We know that every finite subdirectly irreducible lattice can be extended to a simple lattice by adding at most two new elements (Lemma 2.3 from Grätzer&#39;s &quot;The Congruences of a Finite Lattice&quot;, <a href=\"https://arxiv.org/pdf/2104.06539\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/pdf/2104.06539</span><span class=\"invisible\"></span></a>), so there must be oodles of finite simple lattices out there.</p><p><a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a> <a href=\"https://mathstodon.xyz/tags/combinatorics\" class=\"mention hashtag\" rel=\"tag\">#<span>combinatorics</span></a> <a href=\"https://mathstodon.xyz/tags/logic\" class=\"mention hashtag\" rel=\"tag\">#<span>logic</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://mathstodon.xyz/tags/AbstractAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>AbstractAlgebra</span></a></p>", "contentMap": { "en": "<p>A fundamental result in universal algebra is the Subdirect Representation Theorem, which tells us how to decompose an algebra \\(A\\) into its &quot;basic parts&quot;. Formally, we say that \\(A\\) is a subdirect product of \\(A_1\\), \\(A_2\\), ..., \\(A_n\\) when \\(A\\) is a subalgebra of the product<br />\\[<br /> A_1\\times A_2\\times\\cdots\\times A_n<br />\\]<br />and for each index \\(1\\le i\\le n\\) we have for the projection \\(\\pi_i\\) that \\(\\pi_i(A)=A_i\\). In other words, a subdirect product &quot;uses each component completely&quot;, but may be smaller than the full product.</p><p>A trivial circumstance is that \\(\\pi_i:A\\to A_i\\) is an isomorphism for some \\(i\\). The remaining components would then be superfluous. If an algebra \\(A\\) has the property than any way of representing it as a subdirect product is trivial in this sense, we say that \\(A\\) is &quot;subdirectly irreducible&quot;.</p><p>Subdirectly irreducible algebras generalize simple algebras. Subdirectly irreducible groups include all simple groups, as well as the cyclic \\(p\\)-groups \\(\\mathbb{Z}_{p^n}\\) and the Prüfer groups \\(\\mathbb{Z}_{p^\\infty}\\).</p><p>In the case of lattices, there is no known classification of the finite subdirectly irreducible (or simple) lattices. This page (<a href=\"https://math.chapman.edu/~jipsen/posets/si_lattices92.html\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">math.chapman.edu/~jipsen/poset</span><span class=\"invisible\">s/si_lattices92.html</span></a>) by Peter Jipsen has diagrams showing the 92 different nontrivial subdirectly irreducible lattices of order at most 8. See any patterns?</p><p>We know that every finite subdirectly irreducible lattice can be extended to a simple lattice by adding at most two new elements (Lemma 2.3 from Grätzer&#39;s &quot;The Congruences of a Finite Lattice&quot;, <a href=\"https://arxiv.org/pdf/2104.06539\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"\">arxiv.org/pdf/2104.06539</span><span class=\"invisible\"></span></a>), so there must be oodles of finite simple lattices out there.</p><p><a href=\"https://mathstodon.xyz/tags/UniversalAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>UniversalAlgebra</span></a> <a href=\"https://mathstodon.xyz/tags/combinatorics\" class=\"mention hashtag\" rel=\"tag\">#<span>combinatorics</span></a> <a href=\"https://mathstodon.xyz/tags/logic\" class=\"mention hashtag\" rel=\"tag\">#<span>logic</span></a> <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> <a href=\"https://mathstodon.xyz/tags/algebra\" class=\"mention hashtag\" rel=\"tag\">#<span>algebra</span></a> <a href=\"https://mathstodon.xyz/tags/AbstractAlgebra\" class=\"mention hashtag\" rel=\"tag\">#<span>AbstractAlgebra</span></a></p>" }, "updated": "2025-03-21T17:52:56Z", "attachment": [], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/abstractalgebra", "name": "#abstractalgebra" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/algebra", "name": "#algebra" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/math", "name": "#math" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/logic", "name": "#logic" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/combinatorics", "name": "#combinatorics" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/universalalgebra", "name": "#universalalgebra" } ], "replies": { "id": "https://mathstodon.xyz/users/caten/statuses/114201690502682403/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/caten/statuses/114201690502682403/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/caten/statuses/114201690502682403/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/caten/statuses/114201690502682403/likes", "type": "Collection", "totalItems": 9 }, "shares": { "id": "https://mathstodon.xyz/users/caten/statuses/114201690502682403/shares", "type": "Collection", "totalItems": 6 } }