ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/byorgey/statuses/34609", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/icecolbeveridge/statuses/33618", "published": "2017-05-16T15:49:39Z", "url": "https://mathstodon.xyz/@byorgey/34609", "attributedTo": "https://mathstodon.xyz/users/byorgey", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/byorgey/followers", "https://mathstodon.xyz/users/icecolbeveridge" ], "sensitive": false, "atomUri": "tag:mathstodon.xyz,2017-05-16:objectId=34609:objectType=Status", "inReplyToAtomUri": "tag:mathstodon.xyz,2017-05-15:objectId=33618:objectType=Status", "conversation": null, "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@icecolbeveridge\" class=\"u-url mention\">@<span>icecolbeveridge</span></a></span> It depends. With my computer scientist hat on, I say (b); it&#39;s a silly way to express the sum of the empty set. With my combinatorialist hat on, I say (c); if we want to usefully think of \\( \\sum \\) as a discrete analogue of integration, then the sign ought to reverse when you reverse the limits of summation.</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@icecolbeveridge\" class=\"u-url mention\">@<span>icecolbeveridge</span></a></span> It depends. With my computer scientist hat on, I say (b); it&#39;s a silly way to express the sum of the empty set. With my combinatorialist hat on, I say (c); if we want to usefully think of \\( \\sum \\) as a discrete analogue of integration, then the sign ought to reverse when you reverse the limits of summation.</p>" }, "attachment": [], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/icecolbeveridge", "name": "@icecolbeveridge" } ], "replies": { "id": "https://mathstodon.xyz/users/byorgey/statuses/34609/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/byorgey/statuses/34609/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/byorgey/statuses/34609/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/byorgey/statuses/34609/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/byorgey/statuses/34609/shares", "type": "Collection", "totalItems": 0 } }