ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "blurhash": "toot:blurhash", "focalPoint": { "@container": "@list", "@id": "toot:focalPoint" }, "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061", "type": "Note", "summary": null, "inReplyTo": null, "published": "2024-07-15T20:50:14Z", "url": "https://mathstodon.xyz/@albertcardona/112792477010724061", "attributedTo": "https://mathstodon.xyz/users/albertcardona", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/albertcardona/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2024-07-15:objectId=105709037:objectType=Conversation", "content": "<p>&quot;Homeostatic synaptic normalization optimizes learning in network models of neural population codes&quot;, Mayzel and Schneidman, 2024.<br /><a href=\"https://elifesciences.org/reviewed-preprints/96566\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">elifesciences.org/reviewed-pre</span><span class=\"invisible\">prints/96566</span></a></p><p>From the assessment:</p><p>&quot;... an important contribution to the development of a biologically plausible theory of statistical modeling of spiking activity. The authors convincingly implemented the statistical inference of input likelihood in a simple neural circuit, demonstrating the relationship between synaptic homeostasis, neural representations, and computational accuracy.&quot;</p><p><a href=\"https://mathstodon.xyz/tags/neuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>neuroscience</span></a> <a href=\"https://mathstodon.xyz/tags/CompNeurosci\" class=\"mention hashtag\" rel=\"tag\">#<span>CompNeurosci</span></a> <a href=\"https://mathstodon.xyz/tags/synapses\" class=\"mention hashtag\" rel=\"tag\">#<span>synapses</span></a></p>", "contentMap": { "en": "<p>&quot;Homeostatic synaptic normalization optimizes learning in network models of neural population codes&quot;, Mayzel and Schneidman, 2024.<br /><a href=\"https://elifesciences.org/reviewed-preprints/96566\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">elifesciences.org/reviewed-pre</span><span class=\"invisible\">prints/96566</span></a></p><p>From the assessment:</p><p>&quot;... an important contribution to the development of a biologically plausible theory of statistical modeling of spiking activity. The authors convincingly implemented the statistical inference of input likelihood in a simple neural circuit, demonstrating the relationship between synaptic homeostasis, neural representations, and computational accuracy.&quot;</p><p><a href=\"https://mathstodon.xyz/tags/neuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>neuroscience</span></a> <a href=\"https://mathstodon.xyz/tags/CompNeurosci\" class=\"mention hashtag\" rel=\"tag\">#<span>CompNeurosci</span></a> <a href=\"https://mathstodon.xyz/tags/synapses\" class=\"mention hashtag\" rel=\"tag\">#<span>synapses</span></a></p>" }, "attachment": [ { "type": "Document", "mediaType": "image/png", "url": "https://media.mathstodon.xyz/media_attachments/files/112/792/476/565/079/741/original/db19410b6e0d997c.png", "name": "Reshaped Random Projections models outperform Random Projections models.", "blurhash": "U4R{x*0J4-Tet74oM{%24.S%MK$LxvE0R*of", "focalPoint": [ 0, 0 ], "width": 2108, "height": 1075 } ], "tag": [ { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/synapses", "name": "#synapses" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/compneurosci", "name": "#compneurosci" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/neuroscience", "name": "#neuroscience" } ], "replies": { "id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/shares", "type": "Collection", "totalItems": 2 } }