A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2024-07-15T20:50:14Z",
"url": "https://mathstodon.xyz/@albertcardona/112792477010724061",
"attributedTo": "https://mathstodon.xyz/users/albertcardona",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/albertcardona/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2024-07-15:objectId=105709037:objectType=Conversation",
"content": "<p>"Homeostatic synaptic normalization optimizes learning in network models of neural population codes", Mayzel and Schneidman, 2024.<br /><a href=\"https://elifesciences.org/reviewed-preprints/96566\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">elifesciences.org/reviewed-pre</span><span class=\"invisible\">prints/96566</span></a></p><p>From the assessment:</p><p>"... an important contribution to the development of a biologically plausible theory of statistical modeling of spiking activity. The authors convincingly implemented the statistical inference of input likelihood in a simple neural circuit, demonstrating the relationship between synaptic homeostasis, neural representations, and computational accuracy."</p><p><a href=\"https://mathstodon.xyz/tags/neuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>neuroscience</span></a> <a href=\"https://mathstodon.xyz/tags/CompNeurosci\" class=\"mention hashtag\" rel=\"tag\">#<span>CompNeurosci</span></a> <a href=\"https://mathstodon.xyz/tags/synapses\" class=\"mention hashtag\" rel=\"tag\">#<span>synapses</span></a></p>",
"contentMap": {
"en": "<p>"Homeostatic synaptic normalization optimizes learning in network models of neural population codes", Mayzel and Schneidman, 2024.<br /><a href=\"https://elifesciences.org/reviewed-preprints/96566\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">elifesciences.org/reviewed-pre</span><span class=\"invisible\">prints/96566</span></a></p><p>From the assessment:</p><p>"... an important contribution to the development of a biologically plausible theory of statistical modeling of spiking activity. The authors convincingly implemented the statistical inference of input likelihood in a simple neural circuit, demonstrating the relationship between synaptic homeostasis, neural representations, and computational accuracy."</p><p><a href=\"https://mathstodon.xyz/tags/neuroscience\" class=\"mention hashtag\" rel=\"tag\">#<span>neuroscience</span></a> <a href=\"https://mathstodon.xyz/tags/CompNeurosci\" class=\"mention hashtag\" rel=\"tag\">#<span>CompNeurosci</span></a> <a href=\"https://mathstodon.xyz/tags/synapses\" class=\"mention hashtag\" rel=\"tag\">#<span>synapses</span></a></p>"
},
"attachment": [
{
"type": "Document",
"mediaType": "image/png",
"url": "https://media.mathstodon.xyz/media_attachments/files/112/792/476/565/079/741/original/db19410b6e0d997c.png",
"name": "Reshaped Random Projections models outperform Random Projections models.",
"blurhash": "U4R{x*0J4-Tet74oM{%24.S%MK$LxvE0R*of",
"focalPoint": [
0,
0
],
"width": 2108,
"height": 1075
}
],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/synapses",
"name": "#synapses"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/compneurosci",
"name": "#compneurosci"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/neuroscience",
"name": "#neuroscience"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/likes",
"type": "Collection",
"totalItems": 1
},
"shares": {
"id": "https://mathstodon.xyz/users/albertcardona/statuses/112792477010724061/shares",
"type": "Collection",
"totalItems": 2
}
}