ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies", "type": "Collection", "first": { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies?page=true", "type": "CollectionPage", "next": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies", "items": [ { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393", "type": "Note", "summary": "Solution to (2)", "inReplyTo": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641", "published": "2022-11-10T05:10:41Z", "url": "https://mathstodon.xyz/@PedanticOwl/109317786272798393", "attributedTo": "https://mathstodon.xyz/users/PedanticOwl", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/PedanticOwl/followers" ], "sensitive": true, "atomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393", "inReplyToAtomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641", "conversation": "tag:mathstodon.xyz,2022-11-09:objectId=28716228:objectType=Conversation", "content": "<p>Fix \\(p_0\\in B_0\\) and note that \\(f_0(x+p_0)=f_0(x)+p_0\\), \\(f_1(x+p_0)=f_1(x)\\), and \\(f_2(x+p_0)=f_2(x)\\) for all \\(x\\in\\mathbb R\\). So \\(p_0\\) is a period of \\(f_1\\) and \\(f_2\\). Similarly, fix \\(p_1\\in B_1\\) and \\(p_2\\in B_2\\), which will be periods of \\(f_0, f_2\\) and \\(f_0, f_1\\), respectively.</p><p>(cont...)</p>", "contentMap": { "en": "<p>Fix \\(p_0\\in B_0\\) and note that \\(f_0(x+p_0)=f_0(x)+p_0\\), \\(f_1(x+p_0)=f_1(x)\\), and \\(f_2(x+p_0)=f_2(x)\\) for all \\(x\\in\\mathbb R\\). So \\(p_0\\) is a period of \\(f_1\\) and \\(f_2\\). Similarly, fix \\(p_1\\in B_1\\) and \\(p_2\\in B_2\\), which will be periods of \\(f_0, f_2\\) and \\(f_0, f_1\\), respectively.</p><p>(cont...)</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/replies?min_id=109317800660298998&page=true", "partOf": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/replies", "items": [ "https://mathstodon.xyz/users/PedanticOwl/statuses/109317800660298998" ] } }, "likes": { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/shares", "type": "Collection", "totalItems": 0 } } ] } }