A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies",
"type": "Collection",
"first": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies?page=true",
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies",
"items": [
{
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393",
"type": "Note",
"summary": "Solution to (2)",
"inReplyTo": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641",
"published": "2022-11-10T05:10:41Z",
"url": "https://mathstodon.xyz/@PedanticOwl/109317786272798393",
"attributedTo": "https://mathstodon.xyz/users/PedanticOwl",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/PedanticOwl/followers"
],
"sensitive": true,
"atomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393",
"inReplyToAtomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641",
"conversation": "tag:mathstodon.xyz,2022-11-09:objectId=28716228:objectType=Conversation",
"content": "<p>Fix \\(p_0\\in B_0\\) and note that \\(f_0(x+p_0)=f_0(x)+p_0\\), \\(f_1(x+p_0)=f_1(x)\\), and \\(f_2(x+p_0)=f_2(x)\\) for all \\(x\\in\\mathbb R\\). So \\(p_0\\) is a period of \\(f_1\\) and \\(f_2\\). Similarly, fix \\(p_1\\in B_1\\) and \\(p_2\\in B_2\\), which will be periods of \\(f_0, f_2\\) and \\(f_0, f_1\\), respectively.</p><p>(cont...)</p>",
"contentMap": {
"en": "<p>Fix \\(p_0\\in B_0\\) and note that \\(f_0(x+p_0)=f_0(x)+p_0\\), \\(f_1(x+p_0)=f_1(x)\\), and \\(f_2(x+p_0)=f_2(x)\\) for all \\(x\\in\\mathbb R\\). So \\(p_0\\) is a period of \\(f_1\\) and \\(f_2\\). Similarly, fix \\(p_1\\in B_1\\) and \\(p_2\\in B_2\\), which will be periods of \\(f_0, f_2\\) and \\(f_0, f_1\\), respectively.</p><p>(cont...)</p>"
},
"attachment": [],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/replies?min_id=109317800660298998&page=true",
"partOf": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/replies",
"items": [
"https://mathstodon.xyz/users/PedanticOwl/statuses/109317800660298998"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/likes",
"type": "Collection",
"totalItems": 0
},
"shares": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393/shares",
"type": "Collection",
"totalItems": 0
}
}
]
}
}