A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641",
"type": "Note",
"summary": "Solution to (2)",
"inReplyTo": "https://mathstodon.xyz/users/PedanticOwl/statuses/109311337267102763",
"published": "2022-11-10T05:10:18Z",
"url": "https://mathstodon.xyz/@PedanticOwl/109317784736368641",
"attributedTo": "https://mathstodon.xyz/users/PedanticOwl",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/PedanticOwl/followers"
],
"sensitive": true,
"atomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641",
"inReplyToAtomUri": "https://mathstodon.xyz/users/PedanticOwl/statuses/109311337267102763",
"conversation": "tag:mathstodon.xyz,2022-11-09:objectId=28716228:objectType=Conversation",
"content": "<p>Let \\(B_0,B_1,B_2\\subseteq\\mathbb R\\) be disjoint nonempty sets such that \\(B_0\\sqcup B_1\\sqcup B_2\\) is a basis for \\(\\mathbb R\\) as a vector space over the field \\(\\mathbb Q\\). So every \\(x\\in\\mathbb R\\) can be written uniquely as \\[x=x_0+x_1+x_2,\\] where \\(x_i\\in\\text{span}_{\\mathbb Q}(B_i)\\). Consider the functions \\(f_i(x)=x_i\\). By definition, \\[x=f_0(x)+f_1(x)+f_2(x).\\]</p><p>(cont...)</p>",
"contentMap": {
"en": "<p>Let \\(B_0,B_1,B_2\\subseteq\\mathbb R\\) be disjoint nonempty sets such that \\(B_0\\sqcup B_1\\sqcup B_2\\) is a basis for \\(\\mathbb R\\) as a vector space over the field \\(\\mathbb Q\\). So every \\(x\\in\\mathbb R\\) can be written uniquely as \\[x=x_0+x_1+x_2,\\] where \\(x_i\\in\\text{span}_{\\mathbb Q}(B_i)\\). Consider the functions \\(f_i(x)=x_i\\). By definition, \\[x=f_0(x)+f_1(x)+f_2(x).\\]</p><p>(cont...)</p>"
},
"attachment": [],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies?min_id=109317786272798393&page=true",
"partOf": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/replies",
"items": [
"https://mathstodon.xyz/users/PedanticOwl/statuses/109317786272798393"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/likes",
"type": "Collection",
"totalItems": 0
},
"shares": {
"id": "https://mathstodon.xyz/users/PedanticOwl/statuses/109317784736368641/shares",
"type": "Collection",
"totalItems": 0
}
}