ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount", "Hashtag": "as:Hashtag" } ], "id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223", "type": "Note", "summary": null, "inReplyTo": null, "published": "2023-03-18T03:36:36Z", "url": "https://mathstodon.xyz/@xameer/110042192018805223", "attributedTo": "https://mathstodon.xyz/users/xameer", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/xameer/followers", "https://mastodon.social/users/talex5" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2023-03-18:objectId=44555182:objectType=Conversation", "content": "<p>So one way to define <a href=\"https://mathstodon.xyz/tags/continuousintegration\" class=\"mention hashtag\" rel=\"tag\">#<span>continuousintegration</span></a> is to write recursive function that defines its inputs in terms of the outputs, which the function gives using initial inputs and so on.<br />So domain corresponds to rand and vice versa and this describes continuity of the function?<br />Can we define the continuity in <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> like this<br />Why types should I use if i write it in <a href=\"https://mathstodon.xyz/tags/haskell\" class=\"mention hashtag\" rel=\"tag\">#<span>haskell</span></a><br />Aha others are thinking about it too<br />Albeit, i don&#39;t think I can treat arrows like applicatives in my approach<br />Quote<br />fetching gives you a source promise and you want an image promise<br />writing pipelines using arrow notation is difficult because we have to program in a point-free style (without variables).<br />ci- is cool<br /><a href=\"https://codeberg.org/Codeberg-CI/request-access\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">codeberg.org/Codeberg-CI/reque</span><span class=\"invisible\">st-access</span></a><br /><a href=\"https://roscidus.com/blog/blog/2019/11/14/cicd-pipelines/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">roscidus.com/blog/blog/2019/11</span><span class=\"invisible\">/14/cicd-pipelines/</span></a><br />via <span class=\"h-card\" translate=\"no\"><a href=\"https://mastodon.social/@talex5\" class=\"u-url mention\">@<span>talex5</span></a></span></p>", "contentMap": { "en": "<p>So one way to define <a href=\"https://mathstodon.xyz/tags/continuousintegration\" class=\"mention hashtag\" rel=\"tag\">#<span>continuousintegration</span></a> is to write recursive function that defines its inputs in terms of the outputs, which the function gives using initial inputs and so on.<br />So domain corresponds to rand and vice versa and this describes continuity of the function?<br />Can we define the continuity in <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> like this<br />Why types should I use if i write it in <a href=\"https://mathstodon.xyz/tags/haskell\" class=\"mention hashtag\" rel=\"tag\">#<span>haskell</span></a><br />Aha others are thinking about it too<br />Albeit, i don&#39;t think I can treat arrows like applicatives in my approach<br />Quote<br />fetching gives you a source promise and you want an image promise<br />writing pipelines using arrow notation is difficult because we have to program in a point-free style (without variables).<br />ci- is cool<br /><a href=\"https://codeberg.org/Codeberg-CI/request-access\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">codeberg.org/Codeberg-CI/reque</span><span class=\"invisible\">st-access</span></a><br /><a href=\"https://roscidus.com/blog/blog/2019/11/14/cicd-pipelines/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">roscidus.com/blog/blog/2019/11</span><span class=\"invisible\">/14/cicd-pipelines/</span></a><br />via <span class=\"h-card\" translate=\"no\"><a href=\"https://mastodon.social/@talex5\" class=\"u-url mention\">@<span>talex5</span></a></span></p>" }, "updated": "2023-03-18T19:29:01Z", "attachment": [], "tag": [ { "type": "Mention", "href": "https://mastodon.social/users/talex5", "name": "@talex5@mastodon.social" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/haskell", "name": "#haskell" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/math", "name": "#math" }, { "type": "Hashtag", "href": "https://mathstodon.xyz/tags/continuousintegration", "name": "#continuousintegration" } ], "replies": { "id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/likes", "type": "Collection", "totalItems": 3 }, "shares": { "id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/shares", "type": "Collection", "totalItems": 1 } }