A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2023-03-18T03:36:36Z",
"url": "https://mathstodon.xyz/@xameer/110042192018805223",
"attributedTo": "https://mathstodon.xyz/users/xameer",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/xameer/followers",
"https://mastodon.social/users/talex5"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2023-03-18:objectId=44555182:objectType=Conversation",
"content": "<p>So one way to define <a href=\"https://mathstodon.xyz/tags/continuousintegration\" class=\"mention hashtag\" rel=\"tag\">#<span>continuousintegration</span></a> is to write recursive function that defines its inputs in terms of the outputs, which the function gives using initial inputs and so on.<br />So domain corresponds to rand and vice versa and this describes continuity of the function?<br />Can we define the continuity in <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> like this<br />Why types should I use if i write it in <a href=\"https://mathstodon.xyz/tags/haskell\" class=\"mention hashtag\" rel=\"tag\">#<span>haskell</span></a><br />Aha others are thinking about it too<br />Albeit, i don't think I can treat arrows like applicatives in my approach<br />Quote<br />fetching gives you a source promise and you want an image promise<br />writing pipelines using arrow notation is difficult because we have to program in a point-free style (without variables).<br />ci- is cool<br /><a href=\"https://codeberg.org/Codeberg-CI/request-access\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">codeberg.org/Codeberg-CI/reque</span><span class=\"invisible\">st-access</span></a><br /><a href=\"https://roscidus.com/blog/blog/2019/11/14/cicd-pipelines/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">roscidus.com/blog/blog/2019/11</span><span class=\"invisible\">/14/cicd-pipelines/</span></a><br />via <span class=\"h-card\" translate=\"no\"><a href=\"https://mastodon.social/@talex5\" class=\"u-url mention\">@<span>talex5</span></a></span></p>",
"contentMap": {
"en": "<p>So one way to define <a href=\"https://mathstodon.xyz/tags/continuousintegration\" class=\"mention hashtag\" rel=\"tag\">#<span>continuousintegration</span></a> is to write recursive function that defines its inputs in terms of the outputs, which the function gives using initial inputs and so on.<br />So domain corresponds to rand and vice versa and this describes continuity of the function?<br />Can we define the continuity in <a href=\"https://mathstodon.xyz/tags/math\" class=\"mention hashtag\" rel=\"tag\">#<span>math</span></a> like this<br />Why types should I use if i write it in <a href=\"https://mathstodon.xyz/tags/haskell\" class=\"mention hashtag\" rel=\"tag\">#<span>haskell</span></a><br />Aha others are thinking about it too<br />Albeit, i don't think I can treat arrows like applicatives in my approach<br />Quote<br />fetching gives you a source promise and you want an image promise<br />writing pipelines using arrow notation is difficult because we have to program in a point-free style (without variables).<br />ci- is cool<br /><a href=\"https://codeberg.org/Codeberg-CI/request-access\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">codeberg.org/Codeberg-CI/reque</span><span class=\"invisible\">st-access</span></a><br /><a href=\"https://roscidus.com/blog/blog/2019/11/14/cicd-pipelines/\" target=\"_blank\" rel=\"nofollow noopener noreferrer\" translate=\"no\"><span class=\"invisible\">https://</span><span class=\"ellipsis\">roscidus.com/blog/blog/2019/11</span><span class=\"invisible\">/14/cicd-pipelines/</span></a><br />via <span class=\"h-card\" translate=\"no\"><a href=\"https://mastodon.social/@talex5\" class=\"u-url mention\">@<span>talex5</span></a></span></p>"
},
"updated": "2023-03-18T19:29:01Z",
"attachment": [],
"tag": [
{
"type": "Mention",
"href": "https://mastodon.social/users/talex5",
"name": "@talex5@mastodon.social"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/haskell",
"name": "#haskell"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/math",
"name": "#math"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/continuousintegration",
"name": "#continuousintegration"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/likes",
"type": "Collection",
"totalItems": 3
},
"shares": {
"id": "https://mathstodon.xyz/users/xameer/statuses/110042192018805223/shares",
"type": "Collection",
"totalItems": 1
}
}