ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/varkor/statuses/110414024602207819", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/stringdiagram/statuses/110413852343159524", "published": "2023-05-22T19:38:30Z", "url": "https://mathstodon.xyz/@varkor/110414024602207819", "attributedTo": "https://mathstodon.xyz/users/varkor", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/varkor/followers", "https://mathstodon.xyz/users/stringdiagram" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/varkor/statuses/110414024602207819", "inReplyToAtomUri": "https://mathstodon.xyz/users/stringdiagram/statuses/110413852343159524", "conversation": "tag:mathstodon.xyz,2023-05-22:objectId=51393972:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@stringdiagram\" class=\"u-url mention\">@<span>stringdiagram</span></a></span> Another nice observation is that the same characterisation works for relative monads: a functor is (up to isomorphism) the Kleisli inclusion for a \\(j\\)-relative monad if and only if it is bijective-on-objects and has a right \\(j\\)-relative adjoint.</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@stringdiagram\" class=\"u-url mention\">@<span>stringdiagram</span></a></span> Another nice observation is that the same characterisation works for relative monads: a functor is (up to isomorphism) the Kleisli inclusion for a \\(j\\)-relative monad if and only if it is bijective-on-objects and has a right \\(j\\)-relative adjoint.</p>" }, "updated": "2023-05-22T20:02:38Z", "attachment": [], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/stringdiagram", "name": "@stringdiagram" } ], "replies": { "id": "https://mathstodon.xyz/users/varkor/statuses/110414024602207819/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/varkor/statuses/110414024602207819/replies?only_other_accounts=true&page=true", "partOf": "https://mathstodon.xyz/users/varkor/statuses/110414024602207819/replies", "items": [] } }, "likes": { "id": "https://mathstodon.xyz/users/varkor/statuses/110414024602207819/likes", "type": "Collection", "totalItems": 1 }, "shares": { "id": "https://mathstodon.xyz/users/varkor/statuses/110414024602207819/shares", "type": "Collection", "totalItems": 0 } }