ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/tao/statuses/109452055377694007", "published": "2022-12-03T22:37:08Z", "url": "https://mathstodon.xyz/@tao/109452134240268957", "attributedTo": "https://mathstodon.xyz/users/tao", "to": [ "https://mathstodon.xyz/users/tao/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/tao/statuses/109452134240268957", "inReplyToAtomUri": "https://mathstodon.xyz/users/tao/statuses/109452055377694007", "conversation": "tag:mathstodon.xyz,2022-12-03:objectId=32025619:objectType=Conversation", "content": "<p>* Preserved by analytic continuation -&gt; suffices to check some indiscrete range of complex parameter / work with formal power series expansions in that parameter</p><p>* Is closed under &quot;induction on scales&quot; / &quot;concatenation&quot; / &quot;semigroup composition&quot; -&gt; suffices to check an infinitesimal (or &quot;single scale&quot;, or &quot;differentiated&quot;) version [but often one cannot afford to &quot;lose constants&quot; after applying this reduction]</p><p>(10/)</p>", "contentMap": { "en": "<p>* Preserved by analytic continuation -&gt; suffices to check some indiscrete range of complex parameter / work with formal power series expansions in that parameter</p><p>* Is closed under &quot;induction on scales&quot; / &quot;concatenation&quot; / &quot;semigroup composition&quot; -&gt; suffices to check an infinitesimal (or &quot;single scale&quot;, or &quot;differentiated&quot;) version [but often one cannot afford to &quot;lose constants&quot; after applying this reduction]</p><p>(10/)</p>" }, "updated": "2022-12-03T22:38:04Z", "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies?min_id=109452205408644988&page=true", "partOf": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/replies", "items": [ "https://mathstodon.xyz/users/tao/statuses/109452205408644988" ] } }, "likes": { "id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/likes", "type": "Collection", "totalItems": 12 }, "shares": { "id": "https://mathstodon.xyz/users/tao/statuses/109452134240268957/shares", "type": "Collection", "totalItems": 3 } }