A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount"
}
],
"id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706",
"type": "Note",
"summary": null,
"inReplyTo": "https://mathstodon.xyz/users/tao/statuses/109451634735720062",
"published": "2022-12-03T20:32:25Z",
"url": "https://mathstodon.xyz/@tao/109451643811911706",
"attributedTo": "https://mathstodon.xyz/users/tao",
"to": [
"https://mathstodon.xyz/users/tao/followers"
],
"cc": [
"https://www.w3.org/ns/activitystreams#Public"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/tao/statuses/109451643811911706",
"inReplyToAtomUri": "https://mathstodon.xyz/users/tao/statuses/109451634735720062",
"conversation": "tag:mathstodon.xyz,2022-12-03:objectId=32025619:objectType=Conversation",
"content": "<p>Examples:</p><p>* Reflection symmetry -> suffices to test odd and even functions separately. </p><p>* Translation invariance -> suffices to test individual plane waves (i.e., to inspect the Fourier multiplier symbol). </p><p>* Dilation invariance [if unitary] -> suffices to test homogeneous functions. </p><p>* Rotation invariance -> suffices to test the case of spherical harmonic behavior in angular variable (separation of variables). [This is the case for the MathOverflow post listed above.]</p><p>* etc. </p><p>(2/2)</p>",
"contentMap": {
"en": "<p>Examples:</p><p>* Reflection symmetry -> suffices to test odd and even functions separately. </p><p>* Translation invariance -> suffices to test individual plane waves (i.e., to inspect the Fourier multiplier symbol). </p><p>* Dilation invariance [if unitary] -> suffices to test homogeneous functions. </p><p>* Rotation invariance -> suffices to test the case of spherical harmonic behavior in angular variable (separation of variables). [This is the case for the MathOverflow post listed above.]</p><p>* etc. </p><p>(2/2)</p>"
},
"updated": "2022-12-03T20:41:55Z",
"attachment": [],
"tag": [],
"replies": {
"id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/replies?min_id=109451731409275399&page=true",
"partOf": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/replies",
"items": [
"https://mathstodon.xyz/users/tao/statuses/109451731409275399"
]
}
},
"likes": {
"id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/likes",
"type": "Collection",
"totalItems": 32
},
"shares": {
"id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/shares",
"type": "Collection",
"totalItems": 7
}
}