ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/tao/statuses/109451634735720062", "published": "2022-12-03T20:32:25Z", "url": "https://mathstodon.xyz/@tao/109451643811911706", "attributedTo": "https://mathstodon.xyz/users/tao", "to": [ "https://mathstodon.xyz/users/tao/followers" ], "cc": [ "https://www.w3.org/ns/activitystreams#Public" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/tao/statuses/109451643811911706", "inReplyToAtomUri": "https://mathstodon.xyz/users/tao/statuses/109451634735720062", "conversation": "tag:mathstodon.xyz,2022-12-03:objectId=32025619:objectType=Conversation", "content": "<p>Examples:</p><p>* Reflection symmetry -&gt; suffices to test odd and even functions separately. </p><p>* Translation invariance -&gt; suffices to test individual plane waves (i.e., to inspect the Fourier multiplier symbol). </p><p>* Dilation invariance [if unitary] -&gt; suffices to test homogeneous functions. </p><p>* Rotation invariance -&gt; suffices to test the case of spherical harmonic behavior in angular variable (separation of variables). [This is the case for the MathOverflow post listed above.]</p><p>* etc. </p><p>(2/2)</p>", "contentMap": { "en": "<p>Examples:</p><p>* Reflection symmetry -&gt; suffices to test odd and even functions separately. </p><p>* Translation invariance -&gt; suffices to test individual plane waves (i.e., to inspect the Fourier multiplier symbol). </p><p>* Dilation invariance [if unitary] -&gt; suffices to test homogeneous functions. </p><p>* Rotation invariance -&gt; suffices to test the case of spherical harmonic behavior in angular variable (separation of variables). [This is the case for the MathOverflow post listed above.]</p><p>* etc. </p><p>(2/2)</p>" }, "updated": "2022-12-03T20:41:55Z", "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/replies?min_id=109451731409275399&page=true", "partOf": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/replies", "items": [ "https://mathstodon.xyz/users/tao/statuses/109451731409275399" ] } }, "likes": { "id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/likes", "type": "Collection", "totalItems": 32 }, "shares": { "id": "https://mathstodon.xyz/users/tao/statuses/109451643811911706/shares", "type": "Collection", "totalItems": 7 } }