ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008", "type": "Note", "summary": null, "inReplyTo": "https://mathstodon.xyz/users/pvk/statuses/109519752120949962", "published": "2022-12-15T21:16:44Z", "url": "https://mathstodon.xyz/@pvk/109519765812226008", "attributedTo": "https://mathstodon.xyz/users/pvk", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/pvk/followers", "https://mathstodon.xyz/users/JordiGH" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008", "inReplyToAtomUri": "https://mathstodon.xyz/users/pvk/statuses/109519752120949962", "conversation": "tag:mathstodon.xyz,2022-12-15:objectId=33492859:objectType=Conversation", "content": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@JordiGH\" class=\"u-url mention\">@<span>JordiGH</span></a></span> What&#39;s cool about this is that a lot of natural structures/properties of infinity-categories can be encoded (at least for presentable ones) as modules over something in Pr^L. For example, a stable presentable infinity-category is a module over Spectra, and the stabilization of \\(\\mathcal{C}\\) is \\(\\mathsf{Spectra} \\otimes \\mathcal{C}\\).</p>", "contentMap": { "en": "<p><span class=\"h-card\" translate=\"no\"><a href=\"https://mathstodon.xyz/@JordiGH\" class=\"u-url mention\">@<span>JordiGH</span></a></span> What&#39;s cool about this is that a lot of natural structures/properties of infinity-categories can be encoded (at least for presentable ones) as modules over something in Pr^L. For example, a stable presentable infinity-category is a module over Spectra, and the stabilization of \\(\\mathcal{C}\\) is \\(\\mathsf{Spectra} \\otimes \\mathcal{C}\\).</p>" }, "attachment": [], "tag": [ { "type": "Mention", "href": "https://mathstodon.xyz/users/JordiGH", "name": "@JordiGH" } ], "replies": { "id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/replies?min_id=109519767782688239&page=true", "partOf": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/replies", "items": [ "https://mathstodon.xyz/users/pvk/statuses/109519767782688239" ] } }, "likes": { "id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/likes", "type": "Collection", "totalItems": 0 }, "shares": { "id": "https://mathstodon.xyz/users/pvk/statuses/109519765812226008/shares", "type": "Collection", "totalItems": 0 } }