A small tool to view real-world ActivityPub objects as JSON! Enter a URL
or username from Mastodon or a similar service below, and we'll send a
request with
the right
Accept
header
to the server to view the underlying object.
{
"@context": [
"https://www.w3.org/ns/activitystreams",
{
"ostatus": "http://ostatus.org#",
"atomUri": "ostatus:atomUri",
"inReplyToAtomUri": "ostatus:inReplyToAtomUri",
"conversation": "ostatus:conversation",
"sensitive": "as:sensitive",
"toot": "http://joinmastodon.org/ns#",
"votersCount": "toot:votersCount",
"blurhash": "toot:blurhash",
"focalPoint": {
"@container": "@list",
"@id": "toot:focalPoint"
},
"Hashtag": "as:Hashtag"
}
],
"id": "https://mathstodon.xyz/users/mlliarm/statuses/110597383792379737",
"type": "Note",
"summary": null,
"inReplyTo": null,
"published": "2023-06-24T04:49:10Z",
"url": "https://mathstodon.xyz/@mlliarm/110597383792379737",
"attributedTo": "https://mathstodon.xyz/users/mlliarm",
"to": [
"https://www.w3.org/ns/activitystreams#Public"
],
"cc": [
"https://mathstodon.xyz/users/mlliarm/followers"
],
"sensitive": false,
"atomUri": "https://mathstodon.xyz/users/mlliarm/statuses/110597383792379737",
"inReplyToAtomUri": null,
"conversation": "tag:mathstodon.xyz,2023-06-24:objectId=54964271:objectType=Conversation",
"content": "<p>Yet another classic, at last found its way to my library. </p><p>I'm wondering. If <a href=\"https://mathstodon.xyz/tags/computability\" class=\"mention hashtag\" rel=\"tag\">#<span>computability</span></a> and <a href=\"https://mathstodon.xyz/tags/unsolvability\" class=\"mention hashtag\" rel=\"tag\">#<span>unsolvability</span></a> theories are mostly concerned with the existence of algorithms for classes of problems, if one could prove or disprove such a thing (class of theorems?) starting from <a href=\"https://mathstodon.xyz/tags/geometry\" class=\"mention hashtag\" rel=\"tag\">#<span>geometry</span></a>.</p><p>I'll explain. I've recently understood (Steenrod et al, "First concepts of topology") that <a href=\"https://mathstodon.xyz/tags/topology\" class=\"mention hashtag\" rel=\"tag\">#<span>topology</span></a> is mostly concerned in proving existence theorems. The subject matter of this book sounds, in a way, like an attempt to prove such theorems. So naturally I came to wonder if anyone had attempted tackling them with topological means and tools instead. I haven't looked to see if this question even makes sense, but my humble instinct says that maybe yes, and that most likely at least someone has worked on it in the past.</p>",
"contentMap": {
"en": "<p>Yet another classic, at last found its way to my library. </p><p>I'm wondering. If <a href=\"https://mathstodon.xyz/tags/computability\" class=\"mention hashtag\" rel=\"tag\">#<span>computability</span></a> and <a href=\"https://mathstodon.xyz/tags/unsolvability\" class=\"mention hashtag\" rel=\"tag\">#<span>unsolvability</span></a> theories are mostly concerned with the existence of algorithms for classes of problems, if one could prove or disprove such a thing (class of theorems?) starting from <a href=\"https://mathstodon.xyz/tags/geometry\" class=\"mention hashtag\" rel=\"tag\">#<span>geometry</span></a>.</p><p>I'll explain. I've recently understood (Steenrod et al, "First concepts of topology") that <a href=\"https://mathstodon.xyz/tags/topology\" class=\"mention hashtag\" rel=\"tag\">#<span>topology</span></a> is mostly concerned in proving existence theorems. The subject matter of this book sounds, in a way, like an attempt to prove such theorems. So naturally I came to wonder if anyone had attempted tackling them with topological means and tools instead. I haven't looked to see if this question even makes sense, but my humble instinct says that maybe yes, and that most likely at least someone has worked on it in the past.</p>"
},
"attachment": [
{
"type": "Document",
"mediaType": "image/jpeg",
"url": "https://media.mathstodon.xyz/media_attachments/files/110/597/345/427/033/396/original/c3dc4336a8582f5c.jpeg",
"name": "Cover of the \"Computability and Unsolvability\" book by prof. Martin Davis.",
"blurhash": "UOEWRnn$I7tRx[kDjFoz-:WBRkadnOf4Rja#",
"focalPoint": [
0,
0
],
"width": 1247,
"height": 1663
},
{
"type": "Document",
"mediaType": "image/jpeg",
"url": "https://media.mathstodon.xyz/media_attachments/files/110/597/349/210/578/915/original/b9e3da6c49877f25.jpeg",
"name": "Introduction of the book: \"...we shall be concerned with the problem of the existence of algorithms or effective computational procedures for solving various problems\".",
"blurhash": "UFKBtEWVt7fk~Wofayayn$WBWBayI9j]WBay",
"focalPoint": [
0,
0
],
"width": 1247,
"height": 1663
}
],
"tag": [
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/topology",
"name": "#topology"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/geometry",
"name": "#geometry"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/unsolvability",
"name": "#unsolvability"
},
{
"type": "Hashtag",
"href": "https://mathstodon.xyz/tags/computability",
"name": "#computability"
}
],
"replies": {
"id": "https://mathstodon.xyz/users/mlliarm/statuses/110597383792379737/replies",
"type": "Collection",
"first": {
"type": "CollectionPage",
"next": "https://mathstodon.xyz/users/mlliarm/statuses/110597383792379737/replies?only_other_accounts=true&page=true",
"partOf": "https://mathstodon.xyz/users/mlliarm/statuses/110597383792379737/replies",
"items": []
}
},
"likes": {
"id": "https://mathstodon.xyz/users/mlliarm/statuses/110597383792379737/likes",
"type": "Collection",
"totalItems": 3
},
"shares": {
"id": "https://mathstodon.xyz/users/mlliarm/statuses/110597383792379737/shares",
"type": "Collection",
"totalItems": 0
}
}