ActivityPub Viewer

A small tool to view real-world ActivityPub objects as JSON! Enter a URL or username from Mastodon or a similar service below, and we'll send a request with the right Accept header to the server to view the underlying object.

Open in browser →
{ "@context": [ "https://www.w3.org/ns/activitystreams", { "ostatus": "http://ostatus.org#", "atomUri": "ostatus:atomUri", "inReplyToAtomUri": "ostatus:inReplyToAtomUri", "conversation": "ostatus:conversation", "sensitive": "as:sensitive", "toot": "http://joinmastodon.org/ns#", "votersCount": "toot:votersCount" } ], "id": "https://mathstodon.xyz/users/mc/statuses/109709696093274734", "type": "Note", "summary": null, "inReplyTo": null, "published": "2023-01-18T10:18:30Z", "url": "https://mathstodon.xyz/@mc/109709696093274734", "attributedTo": "https://mathstodon.xyz/users/mc", "to": [ "https://www.w3.org/ns/activitystreams#Public" ], "cc": [ "https://mathstodon.xyz/users/mc/followers" ], "sensitive": false, "atomUri": "https://mathstodon.xyz/users/mc/statuses/109709696093274734", "inReplyToAtomUri": null, "conversation": "tag:mathstodon.xyz,2023-01-18:objectId=38018906:objectType=Conversation", "content": "<p>In any given- 2-category K, you can talk about monads: these form a 2-category itself, Mnd(K). Hence you can talk about monads in them too, and these turn out to be distributive laws of monads!<br />But given a distributive law of monads, you can form a new monad in K, hence you get a map Mnd(Mnd(K)) -&gt; Mnd(K)<br />This, together with the fact every identity morphism in K is a monad, gives Mnd a (pseudo)monad structure on 2-Cat!</p><p>TL;DR: taking monads is a monad</p>", "contentMap": { "en": "<p>In any given- 2-category K, you can talk about monads: these form a 2-category itself, Mnd(K). Hence you can talk about monads in them too, and these turn out to be distributive laws of monads!<br />But given a distributive law of monads, you can form a new monad in K, hence you get a map Mnd(Mnd(K)) -&gt; Mnd(K)<br />This, together with the fact every identity morphism in K is a monad, gives Mnd a (pseudo)monad structure on 2-Cat!</p><p>TL;DR: taking monads is a monad</p>" }, "attachment": [], "tag": [], "replies": { "id": "https://mathstodon.xyz/users/mc/statuses/109709696093274734/replies", "type": "Collection", "first": { "type": "CollectionPage", "next": "https://mathstodon.xyz/users/mc/statuses/109709696093274734/replies?min_id=109710122539860198&page=true", "partOf": "https://mathstodon.xyz/users/mc/statuses/109709696093274734/replies", "items": [ "https://mathstodon.xyz/users/mc/statuses/109710122539860198" ] } }, "likes": { "id": "https://mathstodon.xyz/users/mc/statuses/109709696093274734/likes", "type": "Collection", "totalItems": 8 }, "shares": { "id": "https://mathstodon.xyz/users/mc/statuses/109709696093274734/shares", "type": "Collection", "totalItems": 3 } }